login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation to keep the OEIS running. In 2018 we replaced the server with a faster one, added 20000 new sequences, and reached 7000 citations (often saying "discovered thanks to the OEIS").
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A056941 Number of antichains (or order ideals) in the poset 5*m*n or plane partitions with not more than m rows, n columns and entries <= 5. 11
1, 1, 1, 1, 6, 1, 1, 21, 21, 1, 1, 56, 196, 56, 1, 1, 126, 1176, 1176, 126, 1, 1, 252, 5292, 14112, 5292, 252, 1, 1, 462, 19404, 116424, 116424, 19404, 462, 1, 1, 792, 60984, 731808, 1646568, 731808, 60984, 792, 1, 1, 1287, 169884, 3737448, 16818516 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

0,5

REFERENCES

Berman and Koehler, Cardinalities of finite distributive lattices, Mitteilungen aus dem Mathematischen Seminar Giessen, 121 (1976), p. 103-124

P. A. MacMahon, Combinatory Analysis, Section 495, 1916.

R. P. Stanley, Theory and application of plane partitions. II. Studies in Appl. Math. 50 (1971), p. 259-279. Thm. 18.1

LINKS

Table of n, a(n) for n=0..49.

J. Berman and P. Koehler, Cardinalities of finite distributive lattices, Mitteilungen aus dem Mathematischen Seminar Giessen, 121 (1976), 103-124. [Annotated scanned copy]

P. A. MacMahon, Combinatory analysis.

Index entries for sequences related to posets

FORMULA

From Peter Bala, Oct 13 2011: (Start)

Product_{k=0..4} C(n+m+k, m+k)/C(n+k, k) gives the array as a square.

T(n-1,k-1)*T(n,k+1)*T(n+1,k) = T(n-1,k)*T(n,k-1)*T(n+1,k+1).

Define f(r,n) = n!*(n+1)!*...*(n+r)!. The triangle whose (n,k)-th entry is f(r,0)*f(r,n)/(f(r,k)*f(r,n-k)) is A007318 (r = 0), A001263 (r = 1), A056939 (r = 2), A056940 (r = 3) and A056941 (r = 4). (End)

Determinants of 5 X 5 subarrays of Pascal's triangle A007318 (a matrix entry being set to 0 when not present).

Also determinants of 5 X 5 arrays whose entries come from a single row:

  det [C(n,k),C(n,k-1),C(n,k-2),C(n,k-3),C(n,k-4); C(n,k+1),C(n,k),C(n,k-1),C(n,k-2),C(n,k-3); C(n,k+2),C(n,k+1),C(n,k),C(n,k-1),C(n,k-2); C(n,k+3),C(n,k+2),C(n,k+1),C(n,k),C(n,k-1); C(n,k+4),C(n,k+3),C(n,k+2),C(n,k+1),C(n,k)]. - Peter Bala, May 10 2012

EXAMPLE

The array starts:

[1    1      1        1          1           1            1 ...]

[1    6     21       56        126         252          462 ...]

[1   21    196     1176       5292       19404        60984 ...]

[1   56   1176    14112     116424      731808      3737448 ...]

[1  126   5292   116424    1646568    16818516    133613766 ...]

[1  252  19404   731808   16818516   267227532   3184461423 ...]

[1  462  60984  3737448  133613766  3184461423  55197331332 ...]

[...]

PROG

(PARI) A056941(n, m)=prod(k=0, 4, binomial(n+m+k, m+k)/binomial(n+k, k) \\ M. F. Hasler, Sep 26 2018

CROSSREFS

Cf. A000372, A056932, A001263, A056939, A056940.

Antidiagonals sum to A005363 (Hoggatt sequence).

Sequence in context: A060972 A144066 A296827 * A157638 A142596 A176063

Adjacent sequences:  A056938 A056939 A056940 * A056942 A056943 A056944

KEYWORD

nonn,easy,tabl

AUTHOR

Mitch Harris

EXTENSIONS

Edited by M. F. Hasler, Sep 26 2018

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 13 19:41 EST 2018. Contains 318087 sequences. (Running on oeis4.)