login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A056941 Number of antichains (or order ideals) in the poset 5*m*n or plane partitions with not more than m rows, n columns and entries <= 5. 18

%I #61 Nov 15 2022 02:41:36

%S 1,1,1,1,6,1,1,21,21,1,1,56,196,56,1,1,126,1176,1176,126,1,1,252,5292,

%T 14112,5292,252,1,1,462,19404,116424,116424,19404,462,1,1,792,60984,

%U 731808,1646568,731808,60984,792,1,1,1287,169884,3737448,16818516,16818516,3737448,169884,1287,1

%N Number of antichains (or order ideals) in the poset 5*m*n or plane partitions with not more than m rows, n columns and entries <= 5.

%C Triangle of generalized binomial coefficients (n,k)_5; cf. A342889. - _N. J. A. Sloane_, Apr 03 2021

%D Berman and Koehler, Cardinalities of finite distributive lattices, Mitteilungen aus dem Mathematischen Seminar Giessen, 121 (1976), p. 103-124

%D P. A. MacMahon, Combinatory Analysis, Section 495, 1916.

%D R. P. Stanley, Theory and application of plane partitions. II. Studies in Appl. Math. 50 (1971), p. 259-279. Thm. 18.1

%H Seiichi Manyama, <a href="/A056941/b056941.txt">Rows n = 0..139 of triangle, flattened</a>

%H J. Berman and P. Koehler, <a href="/A006356/a006356.pdf">Cardinalities of finite distributive lattices</a>, Mitteilungen aus dem Mathematischen Seminar Giessen, 121 (1976), 103-124. [Annotated scanned copy]

%H Johann Cigler, <a href="https://arxiv.org/abs/2103.01652">Pascal triangle, Hoggatt matrices, and analogous constructions</a>, arXiv:2103.01652 [math.CO], 2021.

%H Johann Cigler, <a href="https://www.researchgate.net/publication/349376205_Some_observations_about_Hoggatt_triangles">Some observations about Hoggatt triangles</a>, Universität Wien (Austria, 2021).

%H P. A. MacMahon, <a href="http://name.umdl.umich.edu/ABU9009.0001.001">Combinatory analysis</a>.

%H <a href="/index/Pos#posets">Index entries for sequences related to posets</a>

%F From _Peter Bala_, Oct 13 2011: (Start)

%F A(n, k) = Product_{j=0..4} C(n+k+j, k+j)/C(n+j, j) gives the array as a square.

%F g(n-1, k-1)*g(n, k+1)*g(n+1, k) = g(n-1, k)*g(n, k-1)*g(n+1, k+1) where g(n, k) is the array A(n, k) and triangle T(n, k).

%F Define f(r,n) = n!*(n+1)!*...*(n+r)!. The triangle whose (n,k)-th entry is f(r,0)*f(r,n)/(f(r,k)*f(r,n-k)) is A007318 (r = 0), A001263 (r = 1), A056939 (r = 2), A056940 (r = 3) and A056941 (r = 4). (End)

%F From _Peter Bala_, May 10 2012: (Start)

%F Determinants of 5 X 5 subarrays of Pascal's triangle A007318 (a matrix entry being set to 0 when not present).

%F Also determinants of 5 X 5 arrays whose entries come from a single row:

%F det [C(n,k), C(n,k-1), C(n,k-2), C(n,k-3), C(n,k-4); C(n,k+1), C(n,k), C(n,k-1), C(n,k-2), C(n,k-3); C(n,k+2), C(n,k+1), C(n,k), C(n,k-1), C(n,k-2); C(n,k+3), C(n,k+2), C(n,k+1), C(n,k), C(n,k-1); C(n,k+4), C(n,k+3), C(n,k+2), C(n,k+1), C(n,k)]. (End)

%F From _G. C. Greubel_, Nov 14 2022: (Start)

%F T(n, k) = Product_{j=0..4} binomial(n+j, k)/binomial(k+j, k) (gives the triangle).

%F Sum_{k=0..n} T(n, k) = A005363(n). (End)

%e The array starts:

%e [1 1 1 1 1 1 1 ...]

%e [1 6 21 56 126 252 462 ...]

%e [1 21 196 1176 5292 19404 60984 ...]

%e [1 56 1176 14112 116424 731808 3737448 ...]

%e [1 126 5292 116424 1646568 16818516 133613766 ...]

%e [1 252 19404 731808 16818516 267227532 3184461423 ...]

%e [1 462 60984 3737448 133613766 3184461423 55197331332 ...]

%e [...]

%e Considered as a triangle, the initial rows are:

%e 1;

%e 1, 1;

%e 1, 6, 1;

%e 1, 21, 21, 1;

%e 1, 56, 196, 56, 1;

%e 1, 126, 1176, 1176, 126, 1;

%e 1, 252, 5292, 14112, 5292, 252, 1;

%e 1, 462, 19404, 116424, 116424, 19404, 462, 1;

%e 1, 792, 60984, 731808, 1646568, 731808, 60984, 792, 1; ...

%t T[n_, k_] := Product[Binomial[n+j, k]/Binomial[k+j, k], {j,0,4}];

%t Table[T[n, k], {n,0,13}, {k,0,n}]//Flatten (* _G. C. Greubel_, Nov 14 2022 *)

%o (PARI) A056941(n,m)=prod(k=0,4,binomial(n+m+k,m+k)/binomial(n+k,k)) \\ as an array \\ _M. F. Hasler_, Sep 26 2018

%o (Magma)

%o A056941:= func< n,k | (&*[Binomial(n+j,k)/Binomial(k+j,k): j in [0..4]]) >;

%o [A056941(n,k): k in [0..n], n in [0..12]]; // _G. C. Greubel_, Nov 14 2022

%o (SageMath)

%o def A056941(n,k): return product(binomial(n+j,k)/binomial(k+j,k) for j in (0..4))

%o flatten([[A056941(n,k) for k in range(n+1)] for n in range(14)]) # _G. C. Greubel_, Nov 14 2022

%Y Cf. A000372, A001263, A005363 (row sums), A056932, A056939, A056940, A142465, A142467, A142468.

%Y Antidiagonals sum to A005363 (Hoggatt sequence).

%Y Triangles of generalized binomial coefficients (n,k)_m (or generalized Pascal triangles) for m = 1,...,12: A007318 (Pascal), A001263, A056939, A056940, A056941, A142465, A142467, A142468, A174109, A342889, A342890, A342891.

%K nonn,easy,tabl

%O 0,5

%A _Mitch Harris_

%E Edited by _M. F. Hasler_, Sep 26 2018

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 24 20:08 EDT 2024. Contains 371963 sequences. (Running on oeis4.)