login
A342889
Triangle read by rows: T(n,k) = generalized binomial coefficients (n,k)_10 (n >= 0, 0 <= k <= n).
14
1, 1, 1, 1, 11, 1, 1, 66, 66, 1, 1, 286, 1716, 286, 1, 1, 1001, 26026, 26026, 1001, 1, 1, 3003, 273273, 1184183, 273273, 3003, 1, 1, 8008, 2186184, 33157124, 33157124, 2186184, 8008, 1, 1, 19448, 14158144, 644195552, 2254684432, 644195552, 14158144, 19448, 1
OFFSET
0,5
REFERENCES
B. A. Bondarenko, Generalized Pascal Triangles and Pyramids (in Russian), FAN, Tashkent, 1990, ISBN 5-648-00738-8. English translation published by Fibonacci Association, Santa Clara Univ., Santa Clara, CA, 1993.
LINKS
Richard L. Ollerton, Counting i-paths, Slides of talk presented at Thirteenth International Conference on Fibonacci Numbers and Their Applications, University of Patras (Greece), 2008.
Richard L. Ollerton, Counting i-paths, Background notes for slides of talk presented at Thirteenth International Conference on Fibonacci Numbers and Their Applications, University of Patras (Greece), 2008.
Richard L. Ollerton and Anthony G. Shannon, Extensions of generalized binomial coefficients, In: Howard F.T. (eds) Applications of Fibonacci Numbers. Springer, Dordrecht, pp. 187-199.
Richard L. Ollerton and Anthony G. Shannon, Further properties of generalized binomial coefficient k-extensions, Fibonacci Quarterly 43.2 (2005): 124-129.
Daniel B. Shapiro, Divisibility Properties of Integer Sequences, arXiv:2302.02243 [math.NT], 2023. See also Integers, (2023) Vol. 23, #A57.
FORMULA
The generalized binomial coefficient (n,k)_m = Product_{j=1..k} binomial(n+m-j,m)/binomial(j+m-1,m).
EXAMPLE
Triangle begins:
[1],
[1, 1],
[1, 11, 1],
[1, 66, 66, 1],
[1, 286, 1716, 286, 1],
[1, 1001, 26026, 26026, 1001, 1],
[1, 3003, 273273, 1184183, 273273, 3003, 1],
[1, 8008, 2186184, 33157124, 33157124, 2186184, 8008, 1],
...
MAPLE
# Generalized binomial coefficient:
GBC := proc(n, k, m) local a, j;
a := mul((binomial(n+m-j, m)/binomial(j+m-1, m)), j=1..k);
end;
# Returns first M rows of triangle:
GBCT := proc(m, M) local a, b, n, k; global GBC;
a:=[];
for n from 0 to M do
b:=[seq(GBC(n, k, m), k=0..n)];
a:=[op(a), b];
od: a; end;
GBCT(10, 12);
MATHEMATICA
f[n_, k_, m_] := Product[Binomial[n + m - j, m]/Binomial[j + m - 1, m], {j, k}]; Table[f[n, k, 10], {n, 0, 8}, {k, 0, n}] // Flatten (* Michael De Vlieger, Sep 25 2023 *)
PROG
(PARI) f(n, k, m) = prod(j=1, k, binomial(n-j+m, m)/binomial(j-1+m, m));
T(n, k) = f(n, k, 10); \\ Seiichi Manyama, Apr 02 2021
CROSSREFS
Triangles of generalized binomial coefficients (n,k)_m (or generalized Pascal triangles) for m = 1,...,12: A007318 (Pascal), A001263, A056939, A056940, A056941, A142465, A142467, A142468, A174109, A342889, A342890, A342891.
Sequence in context: A157209 A014469 A157149 * A166979 A022174 A173006
KEYWORD
nonn,tabl
AUTHOR
N. J. A. Sloane, Apr 01 2021
STATUS
approved