login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A096617
Numerator of n*HarmonicNumber(n).
7
1, 3, 11, 25, 137, 147, 363, 761, 7129, 7381, 83711, 86021, 1145993, 1171733, 1195757, 2436559, 42142223, 42822903, 275295799, 279175675, 56574159, 19093197, 444316699, 1347822955, 34052522467, 34395742267, 312536252003
OFFSET
1,2
COMMENTS
a(1) = 1, a(n) = Numerator( H(n) / H(n-1) ), where H(n) = HarmonicNumber(n) = A001008(n)/A002805(n). - Alexander Adamchuk, Oct 29 2004
Sampling a population of n distinct elements with replacement, n HarmonicNumber(n) is the expectation of the sample size for the acquisition of all n distinct elements. - Franz Vrabec, Oct 30 2004
p^2 divides a(p-1) for prime p>3. - Alexander Adamchuk, Jul 16 2006
It appears that a(n) = b(n) defined by b(n+1) = b(n)*(n+1)/g(n) + f(n), f(n) = n*f(n-1)/g(n) and g(n) = gcd(b(n)*(n+1), n*f(n-1)), b(1) = f(1) = g(1) = 1, i.e., the recurrent formula of A000254(n) where both terms are divided by their GCD at each step (and remain divided by this factor in the sequel). Is this easy to prove? - M. F. Hasler, Jul 04 2019
REFERENCES
W. Feller, An Introduction to Probability Theory and Its Applications, Vol. I, 2nd Ed. 1957, p. 211, formula (3.3)
LINKS
Eric Weisstein's World of Mathematics, Complete Set
FORMULA
a(n) = abs(Stirling1(n+1, 2))/(n-1)!. - Vladeta Jovovic, Jul 06 2004
a(n) = numerator of Integral_{t=0..oo} 1-(1-exp(-t/n))^n dt. - Jean-François Alcover, Feb 17 2014
EXAMPLE
1, 3, 11/2, 25/3, 137/12, 147/10, 363/20, 761/35, 7129/280, ...
MAPLE
ZL:=n->sum(sum(1/i, i=1..n), j=1..n): a:=n->floor(numer(ZL(n))): seq(a(n), n=1..27); # Zerinvary Lajos, Jun 14 2007
MATHEMATICA
Numerator[Table[(Sum[(1/k), {k, 1, n}]/Sum[(1/k), {k, 1, n-1}]), {n, 1, 20}]] (* Alexander Adamchuk, Oct 29 2004 *)
Table[n*HarmonicNumber[n] // Numerator, {n, 1, 27}] (* Jean-François Alcover, Feb 17 2014 *)
PROG
(Magma) [Numerator(n*HarmonicNumber(n)): n in [1..40]]; // Vincenzo Librandi, Feb 19 2014
(PARI) {h(n) = sum(k=1, n, 1/k)};
for(n=1, 50, print1(numerator(n*h(n)), ", ")) \\ G. C. Greubel, Sep 01 2018
(PARI) A=List(f=1); for(k=1, 999, t=[A[k]*(k+1), f*=k]); t/=gcd(t); listput(A, t[1]+f=t[2])) \\ Illustrate conjectured equality. - M. F. Hasler, Jul 04 2019
CROSSREFS
Differs from A025529 at 7th term.
Cf. A193758.
Sequence in context: A001008 A375523 A231606 * A025529 A124078 A096795
KEYWORD
nonn,frac
AUTHOR
Eric W. Weisstein, Jul 01 2004
STATUS
approved