OFFSET
0,2
REFERENCES
David H. Bailey, Jonathan M. Borwein, Neil J. Calkin, Roland Girgensohn, D. Russell Luke and Victor H. Moll, Experimental Mathematics in Action, Wellesley, MA: A K Peters, 2007, pp. 18 and 227.
Jonathan Borwein, David Bailey and Roland Girgensohn, Experimentation in Mathematics: Computational Paths to Discovery, Wellesley, MA: A K Peters, 2004, pp. 15-17.
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..10000
Jonathan M. Borwein and Scott B. Lindstrom, Meetings with Lambert W and other special functions in optimization and analysis, Pure and Applied Functional Analysis, Vol. 1, No. 3 (2016), pp. 361-396, alternative link.
Donald E. Knuth, Problem 10832, The American Mathematical Monthly, Vol. 107, No. 9 (2000), p. 863, A Stirling Series, solution by Cecil C. Rousseau, ibid., Vol. 108, No. 9 (2001), pp. 877-878.
Allen Stenger, Experimental Math for Math Monthly Problems, The American Mathematical Monthly, Vol. 124, No. 2 (2017), pp. 116-131, alternative link.
Eric Weisstein's World of Mathematics, Knuth's Series.
FORMULA
Equals Sum_{k>=1} (1/sqrt(2*Pi*k) - k^k/(k!*exp(k))). - Amiram Eldar, Oct 13 2020
Equals 2/3 - A134469. - R. J. Mathar, Dec 17 2024
EXAMPLE
0.0840695087...
MATHEMATICA
Flatten[{0, RealDigits[2/3 + Zeta[1/2]/Sqrt[2*Pi], 10, 100][[1]]}] (* Vaclav Kotesovec, Aug 16 2015 *)
PROG
(PARI) 2/3 + zeta(1/2)/sqrt(2*Pi) \\ Michel Marcus, Aug 15 2015
CROSSREFS
KEYWORD
AUTHOR
Eric W. Weisstein, Jun 30 2004
STATUS
approved