login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A096616
Decimal expansion of 2/3 + zeta(1/2)/sqrt(2*Pi).
1
0, 8, 4, 0, 6, 9, 5, 0, 8, 7, 2, 7, 6, 5, 5, 9, 9, 6, 4, 6, 1, 4, 8, 9, 5, 0, 2, 4, 7, 9, 0, 3, 5, 5, 1, 1, 9, 3, 7, 5, 7, 2, 7, 9, 6, 4, 6, 8, 0, 1, 1, 9, 6, 1, 8, 4, 2, 9, 7, 2, 7, 2, 4, 6, 0, 0, 1, 3, 5, 9, 7, 9, 0, 7, 0, 1, 6, 7, 7, 2, 0, 6, 2, 4, 8, 7, 4, 7, 5, 9, 8, 3, 1, 8, 9, 0, 6, 3, 6, 0, 9, 8
OFFSET
0,2
REFERENCES
David H. Bailey, Jonathan M. Borwein, Neil J. Calkin, Roland Girgensohn, D. Russell Luke and Victor H. Moll, Experimental Mathematics in Action, Wellesley, MA: A K Peters, 2007, pp. 18 and 227.
Jonathan Borwein, David Bailey and Roland Girgensohn, Experimentation in Mathematics: Computational Paths to Discovery, Wellesley, MA: A K Peters, 2004, pp. 15-17.
LINKS
Jonathan M. Borwein and Scott B. Lindstrom, Meetings with Lambert W and other special functions in optimization and analysis, Pure and Applied Functional Analysis, Vol. 1, No. 3 (2016), pp. 361-396, alternative link.
Donald E. Knuth, Problem 10832, The American Mathematical Monthly, Vol. 107, No. 9 (2000), p. 863, A Stirling Series, solution by Cecil C. Rousseau, ibid., Vol. 108, No. 9 (2001), pp. 877-878.
Allen Stenger, Experimental Math for Math Monthly Problems, The American Mathematical Monthly, Vol. 124, No. 2 (2017), pp. 116-131, alternative link.
Eric Weisstein's World of Mathematics, Knuth's Series.
FORMULA
Equals Sum_{k>=1} (1/sqrt(2*Pi*k) - k^k/(k!*exp(k))). - Amiram Eldar, Oct 13 2020
Equals 2/3 - A134469. - R. J. Mathar, Dec 17 2024
EXAMPLE
0.0840695087...
MATHEMATICA
Flatten[{0, RealDigits[2/3 + Zeta[1/2]/Sqrt[2*Pi], 10, 100][[1]]}] (* Vaclav Kotesovec, Aug 16 2015 *)
PROG
(PARI) 2/3 + zeta(1/2)/sqrt(2*Pi) \\ Michel Marcus, Aug 15 2015
CROSSREFS
KEYWORD
nonn,cons,changed
AUTHOR
Eric W. Weisstein, Jun 30 2004
STATUS
approved