login
A364945
Decimal expansion of 1-Catalan.
0
0, 8, 4, 0, 3, 4, 4, 0, 5, 8, 2, 2, 7, 8, 0, 9, 8, 4, 9, 4, 5, 3, 9, 6, 4, 8, 5, 0, 6, 7, 6, 1, 5, 8, 8, 9, 2, 2, 5, 8, 5, 0, 6, 2, 5, 7, 1, 8, 3, 2, 7, 8, 6, 5, 7, 3, 3, 5, 0, 1, 8, 8, 0, 3, 7, 8, 2, 3, 6, 9, 8, 0, 2, 2, 3, 7, 4, 5, 2, 3, 0, 5, 2, 0, 6, 4, 3, 4, 8
OFFSET
0,2
REFERENCES
Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 1.7.2, p. 56.
LINKS
J. W. L. Glaisher, Numerical Values of the Series 1 - 1/3^n + 1/5^n - 1/7^n + 1/9^n - &c. For n = 2, 4, 6, Messenger of Mathematics, Vol. 42 (1913), pp. 50-58. [Available only in the USA through the Hathi Trust]
Michael I. Shamos, A catalog of the real numbers, (2007). See p. 122.
FORMULA
Equals 3F2( -1/2,-1/2,1 ; 1/2,1/2 ; -1) = (1/4) * Sum_{k>=0} (-1)^k/(k-1/2)^2.
Equals 1-A006752.
Equals Sum_{k>=1} k*zeta(2*k+1)/16^k (Glaisher, 1913). - Amiram Eldar, Aug 14 2023
Equals Sum_{k>=1} 16*k/(16*k^2 - 1)^2 = Integral_{x=1..oo} log(x)/(x^4 + x^2) dx (see Shamos). - Stefano Spezia, Nov 14 2024
EXAMPLE
0.084034405822780984945396...
MAPLE
evalf(1-Catalan) ;
MATHEMATICA
RealDigits[1 - Catalan, 10, 120, -1][[1]] (* Amiram Eldar, Aug 14 2023 *)
PROG
(PARI) 1 - Catalan \\ Michel Marcus, Aug 14 2023
CROSSREFS
Cf. A006752.
Sequence in context: A200108 A088397 A021123 * A354632 A114313 A096616
KEYWORD
nonn,cons
AUTHOR
R. J. Mathar, Aug 14 2023
STATUS
approved