login
A200108
Decimal expansion of greatest x satisfying 2*x^2 - cos(x) = sin(x).
3
8, 4, 0, 2, 6, 3, 5, 1, 7, 7, 1, 5, 7, 6, 7, 8, 9, 9, 3, 4, 7, 9, 7, 3, 4, 9, 9, 6, 4, 8, 3, 5, 5, 7, 9, 7, 3, 6, 5, 0, 2, 5, 3, 9, 0, 5, 3, 5, 1, 5, 2, 6, 6, 1, 1, 7, 3, 5, 4, 3, 6, 3, 9, 2, 5, 1, 7, 4, 5, 5, 5, 6, 5, 3, 6, 2, 5, 0, 2, 1, 5, 6, 7, 8, 0, 3, 5, 1, 8, 3, 7, 2, 4, 6, 3, 0, 2, 7, 7
OFFSET
0,1
COMMENTS
See A199949 for a guide to related sequences. The Mathematica program includes a graph.
LINKS
EXAMPLE
least x: -0.4690323711198093057335493058025105005500...
greatest x: 0.840263517715767899347973499648355797365...
MATHEMATICA
a = 2; b = -1; c = 1;
f[x_] := a*x^2 + b*Cos[x]; g[x_] := c*Sin[x]
Plot[{f[x], g[x]}, {x, -3, 3}, {AxesOrigin -> {0, 0}}]
r = x /.
FindRoot[f[x] == g[x], {x, -.47, -.46}, WorkingPrecision -> 110]
RealDigits[r] (* A200107 *)
r = x /. FindRoot[f[x] == g[x], {x, .84, .85}, WorkingPrecision -> 110]
RealDigits[r] (* A200108 *)
PROG
(PARI) a=2; b=-1; c=1; solve(x=0, 1, a*x^2 + b*cos(x) - c*sin(x)) \\ G. C. Greubel, Jun 25 2018
CROSSREFS
Cf. A199949.
Sequence in context: A175040 A238292 A350219 * A088397 A021123 A364945
KEYWORD
nonn,cons
AUTHOR
Clark Kimberling, Nov 13 2011
STATUS
approved