login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A200107 Decimal expansion of least x satisfying 2*x^2 - cos(x) = sin(x), negated. 3
4, 6, 9, 0, 3, 2, 3, 7, 1, 1, 1, 9, 8, 0, 9, 3, 0, 5, 7, 3, 3, 5, 4, 9, 3, 0, 5, 8, 0, 2, 5, 1, 0, 5, 0, 0, 5, 5, 0, 0, 5, 6, 3, 6, 9, 5, 9, 3, 8, 3, 0, 6, 6, 8, 7, 3, 2, 8, 8, 7, 0, 4, 1, 8, 4, 8, 2, 6, 3, 8, 4, 1, 7, 4, 6, 1, 1, 2, 1, 2, 9, 0, 7, 6, 5, 5, 5, 2, 5, 1, 2, 6, 4, 8, 8, 2, 9, 4, 6 (list; constant; graph; refs; listen; history; text; internal format)
OFFSET

0,1

COMMENTS

See A199949 for a guide to related sequences.  The Mathematica program includes a graph.

LINKS

G. C. Greubel, Table of n, a(n) for n = 0..10000

EXAMPLE

least x: -0.4690323711198093057335493058025105005500...

greatest x: 0.84026351771576789934797349964835579736...

MATHEMATICA

a = 2; b = -1; c = 1;

f[x_] := a*x^2 + b*Cos[x]; g[x_] := c*Sin[x]

Plot[{f[x], g[x]}, {x, -3, 3}, {AxesOrigin -> {0, 0}}]

r = x /. FindRoot[f[x] == g[x], {x, -.47, -.46}, WorkingPrecision -> 110]

RealDigits[r]  (* A200107 *)

r = x /. FindRoot[f[x] == g[x], {x, .84, .85}, WorkingPrecision -> 110]

RealDigits[r]  (* A200108 *)

PROG

(PARI) a=2; b=-1; c=1; solve(x=-1, 0, a*x^2 + b*cos(x) - c*sin(x)) \\ G. C. Greubel, Jun 25 2018

CROSSREFS

Cf. A199949.

Sequence in context: A200621 A210665 A228586 * A198733 A010478 A106146

Adjacent sequences:  A200104 A200105 A200106 * A200108 A200109 A200110

KEYWORD

nonn,cons

AUTHOR

Clark Kimberling, Nov 13 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 16 21:10 EDT 2019. Contains 328103 sequences. (Running on oeis4.)