login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A200107
Decimal expansion of least x satisfying 2*x^2 - cos(x) = sin(x), negated.
3
4, 6, 9, 0, 3, 2, 3, 7, 1, 1, 1, 9, 8, 0, 9, 3, 0, 5, 7, 3, 3, 5, 4, 9, 3, 0, 5, 8, 0, 2, 5, 1, 0, 5, 0, 0, 5, 5, 0, 0, 5, 6, 3, 6, 9, 5, 9, 3, 8, 3, 0, 6, 6, 8, 7, 3, 2, 8, 8, 7, 0, 4, 1, 8, 4, 8, 2, 6, 3, 8, 4, 1, 7, 4, 6, 1, 1, 2, 1, 2, 9, 0, 7, 6, 5, 5, 5, 2, 5, 1, 2, 6, 4, 8, 8, 2, 9, 4, 6
OFFSET
0,1
COMMENTS
See A199949 for a guide to related sequences. The Mathematica program includes a graph.
LINKS
EXAMPLE
least x: -0.4690323711198093057335493058025105005500...
greatest x: 0.84026351771576789934797349964835579736...
MATHEMATICA
a = 2; b = -1; c = 1;
f[x_] := a*x^2 + b*Cos[x]; g[x_] := c*Sin[x]
Plot[{f[x], g[x]}, {x, -3, 3}, {AxesOrigin -> {0, 0}}]
r = x /. FindRoot[f[x] == g[x], {x, -.47, -.46}, WorkingPrecision -> 110]
RealDigits[r] (* A200107 *)
r = x /. FindRoot[f[x] == g[x], {x, .84, .85}, WorkingPrecision -> 110]
RealDigits[r] (* A200108 *)
PROG
(PARI) a=2; b=-1; c=1; solve(x=-1, 0, a*x^2 + b*cos(x) - c*sin(x)) \\ G. C. Greubel, Jun 25 2018
CROSSREFS
Cf. A199949.
Sequence in context: A200621 A210665 A228586 * A198733 A010478 A106146
KEYWORD
nonn,cons
AUTHOR
Clark Kimberling, Nov 13 2011
STATUS
approved