login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Decimal expansion of 2/3 + zeta(1/2)/sqrt(2*Pi).
1

%I #28 Dec 17 2024 09:11:25

%S 0,8,4,0,6,9,5,0,8,7,2,7,6,5,5,9,9,6,4,6,1,4,8,9,5,0,2,4,7,9,0,3,5,5,

%T 1,1,9,3,7,5,7,2,7,9,6,4,6,8,0,1,1,9,6,1,8,4,2,9,7,2,7,2,4,6,0,0,1,3,

%U 5,9,7,9,0,7,0,1,6,7,7,2,0,6,2,4,8,7,4,7,5,9,8,3,1,8,9,0,6,3,6,0,9,8

%N Decimal expansion of 2/3 + zeta(1/2)/sqrt(2*Pi).

%D David H. Bailey, Jonathan M. Borwein, Neil J. Calkin, Roland Girgensohn, D. Russell Luke and Victor H. Moll, Experimental Mathematics in Action, Wellesley, MA: A K Peters, 2007, pp. 18 and 227.

%D Jonathan Borwein, David Bailey and Roland Girgensohn, Experimentation in Mathematics: Computational Paths to Discovery, Wellesley, MA: A K Peters, 2004, pp. 15-17.

%H G. C. Greubel, <a href="/A096616/b096616.txt">Table of n, a(n) for n = 0..10000</a>

%H Jonathan M. Borwein and Scott B. Lindstrom, <a href="http://www.ybook.co.jp/online2/oppafa/vol1/p361.html">Meetings with Lambert W and other special functions in optimization and analysis</a>, Pure and Applied Functional Analysis, Vol. 1, No. 3 (2016), pp. 361-396, <a href="https://www.carmamaths.org/resources/jon/WinOpt.pdf">alternative link</a>.

%H Donald E. Knuth, <a href="http://www.jstor.org/stable/2695746">Problem 10832</a>, The American Mathematical Monthly, Vol. 107, No. 9 (2000), p. 863, <a href="http://www.jstor.org/stable/2695574">A Stirling Series</a>, solution by Cecil C. Rousseau, ibid., Vol. 108, No. 9 (2001), pp. 877-878.

%H Allen Stenger, <a href="https://www.jstor.org/stable/10.4169/amer.math.monthly.124.2.116">Experimental Math for Math Monthly Problems</a>, The American Mathematical Monthly, Vol. 124, No. 2 (2017), pp. 116-131, <a href="https://www.allenstenger.com/uploads/1/4/1/8/14182140/expmathmathmonthlyfeb2017.pdf">alternative link</a>.

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/KnuthsSeries.html">Knuth's Series</a>.

%F Equals Sum_{k>=1} (1/sqrt(2*Pi*k) - k^k/(k!*exp(k))). - _Amiram Eldar_, Oct 13 2020

%F Equals 2/3 - A134469. - _R. J. Mathar_, Dec 17 2024

%e 0.0840695087...

%t Flatten[{0, RealDigits[2/3 + Zeta[1/2]/Sqrt[2*Pi], 10, 100][[1]]}] (* _Vaclav Kotesovec_, Aug 16 2015 *)

%o (PARI) 2/3 + zeta(1/2)/sqrt(2*Pi) \\ _Michel Marcus_, Aug 15 2015

%Y Cf. A019727, A059750, A231863.

%K nonn,cons,changed

%O 0,2

%A _Eric W. Weisstein_, Jun 30 2004