login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A193758
Denominator of H(n)/H(n-1), where H(n) is the n-th harmonic number = Sum_{k=1..n} 1/k.
5
2, 9, 22, 125, 137, 343, 726, 6849, 7129, 81191, 83711, 1118273, 1145993, 1171733, 2391514, 41421503, 42142223, 271211719, 275295799, 55835135, 18858053, 439143531, 1332950097, 33695573875, 34052522467, 309561680403, 312536252003, 9146733078187, 9227046511387
OFFSET
2,1
COMMENTS
a(n) mod n^3 = 0 iff n is prime > 3. - Gary Detlefs, Jan 30 2013
LINKS
FORMULA
a(n) = denominator(H(n)/H(n-1)), where H(n) = Sum_{k=1..n} 1/k.
a(n) = numerator(n*H(n))-denominator(n*H(n)). - Gary Detlefs, Sep 05 2011
MAPLE
H:= n-> add(1/k, k=1..n): seq(denom(H(n)/H(n-1)), n=2..25);
MATHEMATICA
h[n_] := Sum[1/i, {i, n}]; Table[Denominator[h[n]/h[n - 1]], {n, 2, 50}] (* T. D. Noe, Aug 04 2011 *)
Denominator[#[[2]]/#[[1]]]&/@Partition[HarmonicNumber[Range[30]], 2, 1] (* Harvey P. Dale, Jul 05 2015 *)
PROG
(Python)
from fractions import Fraction
def aupton(nn):
Hnm1, alst = Fraction(1, 1), []
for n in range(2, nn+1):
Hn = Hnm1 + Fraction(1, n)
alst.append((Hn/Hnm1).denominator)
Hnm1 = Hn
return alst
print(aupton(30)) # Michael S. Branicky, Feb 09 2021
CROSSREFS
Numerators are in A096617.
Sequence in context: A032315 A032224 A254710 * A368626 A032149 A032054
KEYWORD
nonn,frac
AUTHOR
Gary Detlefs, Aug 04 2011
STATUS
approved