login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A368626
Expansion of g.f. A(x) satisfying A(x) = 1 + x*(A(x)^2 - A(-x)^2)/2 + x*(A(x)^3 + A(-x)^3)/2.
5
1, 1, 2, 9, 22, 138, 356, 2585, 6830, 53838, 144156, 1197546, 3233692, 27859444, 75665736, 669553209, 1826204958, 16493851110, 45131989100, 414263198030, 1136416283860, 10568504182860, 29050963193720, 273107307342090, 751985844723308, 7133921326564172, 19670502565821464
OFFSET
0,3
COMMENTS
Conjecture: a(n) is odd when n = 2^k - 1 for k >= 0 and even elsewhere.
LINKS
FORMULA
G.f. A(x) = Sum_{n>=0} a(n)*x^n satisfies the following formulas.
(1) A(x) = 1 + x*(A(x)^2 - A(-x)^2)/2 + x*(A(x)^3 + A(-x)^3)/2.
(2) A(x) = 2 - A(-x) + x*A(x)^2 - x*A(-x)^2.
(3) A(x) = A(-x) + x*A(x)^3 + x*A(-x)^3.
(4.a) A(x) = (1 - sqrt(1-8*x + 4*x*A(-x) + 4*x^2*A(-x)^2)) / (2*x).
(4.b) A(-x) = (sqrt(1+8*x - 4*x*A(x) + 4*x^2*A(x)^2) - 1) / (2*x).
(5) (A(x) + A(-x))/2 = 1/(1 - 2*x*(A(x) - A(-x))/2).
EXAMPLE
G.f.: A(x) = 1 + x + 2*x^2 + 9*x^3 + 22*x^4 + 138*x^5 + 356*x^6 + 2585*x^7 + 6830*x^8 + 53838*x^9 + 144156*x^10 + 1197546*x^11 + 3233692*x^12 + ...
where A(x) is formed from the odd bisection of A(x)^2 and the even bisection of A(x)^3, as can be seen from the expansions
A(x)^2 = 1 + 2*x + 5*x^2 + 22*x^3 + 66*x^4 + 356*x^5 + 1157*x^6 + 6830*x^7 + 23222*x^8 + 144156*x^9 + 504546*x^10 + ...
A(x)^3 = 1 + 3*x + 9*x^2 + 40*x^3 + 138*x^4 + 693*x^5 + 2585*x^6 + 13764*x^7 + 53838*x^8 + 296646*x^9 + 1197546*x^10 + ...
so that the bisections of the above series are related by
(A(x) + A(-x))/2 = 1 + x*(A(x)^2 - A(-x)^2)/2, and
(A(x) - A(-x))/2 = x*(A(x)^3 + A(-x)^3)/2.
SPECIFIC VALUES.
A(t) = 3/2 at t = 0.1819737010113140094420890735437063355509087658723835...
with A(-t) = 0.7945570310255352575261389299040205708629421553742768...
G.f. A(x) diverges at x = 1/5.4, but converges at x = 1/5.5 to yield
A(1/5.5) = 1.496543384376249917206500686071412596234401473798923...
A(-1/5.5) = 0.795582249398671834477410218197255634423553817319574...
Other values are as follows.
A(1/6) = 1.34228124014121938629204994980825043322418782558714594...
A(-1/6) = 0.84031658679173656850293071643280362490543801455743768...
A(1/7) = 1.23812032178413019856840253750104622400159644919325618...
A(-1/7) = 0.87219621912499007272745977375746581998964690903627574...
A(1/8) = 1.18723993315598647777707954645984780429075497185978705...
A(-1/8) = 0.88995083754758616465388572384122362483578619460668827...
PROG
(PARI) {a(n) = my(A=1+x, A_); for(i=1, n, A=truncate(A) + x*O(x^i); B=subst(A, x, -x); A = 1 + x*(A^2 - B^2)/2 + x*(A^3 + B^3)/2 ; ); polcoeff(A, n)}
for(n=0, 30, print1(a(n), ", "))
CROSSREFS
Cf. A368627.
Sequence in context: A032224 A254710 A193758 * A032149 A032054 A027702
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jan 09 2024
STATUS
approved