login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A368628
Expansion of g.f. A(x) satisfying A(x) = 1 + x*(A(x)^2 - A(-x)^2)/2 + x*(A(x)^4 + A(-x)^4)/2.
4
1, 1, 2, 14, 32, 345, 810, 10492, 24880, 356252, 848992, 12946094, 30942208, 492621678, 1179648292, 19379467704, 46468665184, 781821568212, 1876521420624, 32169136799832, 77270414837888, 1344812759618473, 3232175494812466, 56957048059132524, 136958995341531504
OFFSET
0,3
COMMENTS
Conjecture: a(n) is odd when n = (4^k - 1)/3 for k >= 0, and even elsewhere.
LINKS
FORMULA
G.f. A(x) = Sum_{n>=0} a(n)*x^n satisfies the following formulas.
(1) A(x) = 1 + x*(A(x)^2 - A(-x)^2)/2 + x*(A(x)^4 + A(-x)^4)/2.
(2) A(x) = 2 - A(-x) + x*A(x)^2 - x*A(-x)^2.
(3) A(x) = A(-x) + x*A(x)^4 + x*A(-x)^4.
(4.a) A(x) = (1 - sqrt(1-8*x + 4*x*A(-x) + 4*x^2*A(-x)^2)) / (2*x).
(4.b) A(-x) = (sqrt(1+8*x - 4*x*A(x) + 4*x^2*A(x)^2) - 1) / (2*x).
(5) (A(x) + A(-x))/2 = 1/(1 - x*(A(x) - A(-x))).
EXAMPLE
G.f.: A(x) = 1 + x + 2*x^2 + 14*x^3 + 32*x^4 + 345*x^5 + 810*x^6 + 10492*x^7 + 24880*x^8 + 356252*x^9 + 848992*x^10 + 12946094*x^11 + 30942208*x^12 + ...
RELATED SERIES.
A(x)^2 = 1 + 2*x + 5*x^2 + 32*x^3 + 96*x^4 + 810*x^5 + 2634*x^6 + 24880*x^7 + 84668*x^8 + 848992*x^9 + 2974649*x^10 + ...
A(x)^4 = 1 + 4*x + 14*x^2 + 84*x^3 + 345*x^4 + 2324*x^5 + 10492*x^6 + 74540*x^7 + 356252*x^8 + 2609552*x^9 + 12946094*x^10 + ...
The even bisection of A(x) may be formed from the odd bisection of A(x)^2:
(A(x) + A(-x))/2 = 1 + 2*x^2 + 32*x^4 + 810*x^6 + 24880*x^8 + 848992*x^10 + ...
(A(x)^2 - A(-x)^2)/2 = 2*x + 32*x^3 + 810*x^5 + 24880*x^7 + 848992*x^9 + ...
The odd bisection of A(x) may be formed from the even bisection of A(x)^4:
(A(x) - A(-x))/2 = x + 14*x^3 + 345*x^5 + 10492*x^7 + 356252*x^9 + ...
(A(x)^4 + A(-x)^4)/2 = 1 + 14*x^2 + 345*x^4 + 10492*x^6 + 356252*x^8 + ...
PROG
(PARI) {a(n) = my(A=1+x, B); for(i=1, n, A=truncate(A)+x*O(x^i); B=subst(A, x, -x);
A = 1 + x*(A^2 - B^2)/2 + x*(A^4 + B^4)/2 ; ); polcoeff(A, n)}
for(n=0, 30, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jan 10 2024
STATUS
approved