login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A378259
G.f. satisfies A(x) = Sum_{n>=1} A(x^(2*n))/A(x^n), with A(0) = 0 and A'(0) = 1.
2
1, 2, 14, 32, 286, 480, 3532, 7520, 75126, 138560, 897876, 1997408, 17039340, 29800896, 233106072, 497063872, 5068814502, 10555899520, 67510782340, 148762640480, 961465207492, 1640373169344, 14064469534248, 31207376374080, 312901302489020, 640840797612416, 4625855789637960, 9196764841428416
OFFSET
1,2
COMMENTS
Conjecture: a(n) == 2 (mod 4) iff n = 2^k + 1 for some k >= 0; elsewhere, a(n) is divisible by 4 for n > 1.
First negative term is at a(224).
LINKS
FORMULA
G.f. A(x) = Sum_{n>=1} a(n)*x^n/4^(n-1) satisfies the following formulas.
(1) A(x) = Sum_{n>=1} A(x^(2*n))/A(x^n).
(2) A(x) = Sum_{n>=1} x^n/(1-x^n) * ([x^n] A(x^2)/A(x)).
(3) A(x^2)/A(x) = Sum_{n>=1} x^n * Sum_{d|n} mu(n/d) * a(d)/4^(d-1), where mu(n) = A008683(n), the Moebius function of n.
EXAMPLE
G.f.: A(x) = x + 2*x^2/4 + 14*x^3/4^2 + 32*x^4/4^3 + 286*x^5/4^4 + 480*x^6/4^5 + 3532*x^7/4^6 + 7520*x^8/4^7 + 75126*x^9/4^8 + 138560*x^10/4^9 + 897876*x^11/4^10 + 1997408*x^12/4^11 + ...
where
A(x) = A(x^2)/A(x) + A(x^4)/A(x^2) + A(x^6)/A(x^3) + A(x^8)/A(x^4) + A(x^10)/A(x^5) + ... + A(x^(2*n))/A(x^n) + ...
with
A(x^2)/A(x) = x - 2*x^2/4 - 2*x^3/4^2 + 30*x^5/4^4 + 96*x^6/4^5 - 564*x^7/4^6 - 672*x^8/4^7 + 17782*x^9/4^8 - 23232*x^10/4^9 - 150700*x^11/4^10 + 31328*x^12/4^11 + ...
SPECIFIC VALUES.
A(t) = 3 at t = 0.7974505378370343003451267990412475368480451135...
A(t) = 5/2 at t = 0.76521942129290360663050508795248283467273528299272...
A(t) = 2 at t = 0.72087935902801574221845019715702827377758681730558...
A(t) = 3/2 at t = 0.65614587043086605186186423048734410347397837010542...
A(t) = 1 at t = 0.55329257825045064604510648563868404064428412610006...
A(t) = 1/2 at t = 0.36885212407172053837959308718581567946754577165148...
A(4/5) = 3.04639791827460031098834746489882724258092426...
A(3/4) = 2.3085152427070861118573648623403955213681844300916...
A(2/3) = 1.5681888169382250959833931491973692522610217218632...
A(1/2) = 0.8198795330503962750204869589412995397389131828850...
A(1/3) = 0.4332475961307505208322404686096133187262861124027...
A(1/4) = 0.2981452060950792897168271259942284248293916912662...
PROG
(PARI) {a(n) = my(V=[1], A, B); for(i=1, n, V = concat(V, 0); A = 4*subst(x*Ser(V), x, x/4); B = subst(A, x, x^2)/A;
V[#V] = 4^(#V-1)/2 * polcoef( sum(m=1, #V, subst(B, x, x^m +x*O(x^#V)) ) - A, #V) ); V[n]}
for(n=1, 30, print1(a(n), ", "))
CROSSREFS
Sequence in context: A337338 A322074 A083015 * A368628 A282036 A373817
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Dec 04 2024
STATUS
approved