login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

G.f. satisfies A(x) = Sum_{n>=1} A(x^(2*n))/A(x^n), with A(0) = 0 and A'(0) = 1.
2

%I #13 Dec 06 2024 11:09:46

%S 1,2,14,32,286,480,3532,7520,75126,138560,897876,1997408,17039340,

%T 29800896,233106072,497063872,5068814502,10555899520,67510782340,

%U 148762640480,961465207492,1640373169344,14064469534248,31207376374080,312901302489020,640840797612416,4625855789637960,9196764841428416

%N G.f. satisfies A(x) = Sum_{n>=1} A(x^(2*n))/A(x^n), with A(0) = 0 and A'(0) = 1.

%C Conjecture: a(n) == 2 (mod 4) iff n = 2^k + 1 for some k >= 0; elsewhere, a(n) is divisible by 4 for n > 1.

%C First negative term is at a(224).

%H Paul D. Hanna, <a href="/A378259/b378259.txt">Table of n, a(n) for n = 1..500</a>

%F G.f. A(x) = Sum_{n>=1} a(n)*x^n/4^(n-1) satisfies the following formulas.

%F (1) A(x) = Sum_{n>=1} A(x^(2*n))/A(x^n).

%F (2) A(x) = Sum_{n>=1} x^n/(1-x^n) * ([x^n] A(x^2)/A(x)).

%F (3) A(x^2)/A(x) = Sum_{n>=1} x^n * Sum_{d|n} mu(n/d) * a(d)/4^(d-1), where mu(n) = A008683(n), the Moebius function of n.

%e G.f.: A(x) = x + 2*x^2/4 + 14*x^3/4^2 + 32*x^4/4^3 + 286*x^5/4^4 + 480*x^6/4^5 + 3532*x^7/4^6 + 7520*x^8/4^7 + 75126*x^9/4^8 + 138560*x^10/4^9 + 897876*x^11/4^10 + 1997408*x^12/4^11 + ...

%e where

%e A(x) = A(x^2)/A(x) + A(x^4)/A(x^2) + A(x^6)/A(x^3) + A(x^8)/A(x^4) + A(x^10)/A(x^5) + ... + A(x^(2*n))/A(x^n) + ...

%e with

%e A(x^2)/A(x) = x - 2*x^2/4 - 2*x^3/4^2 + 30*x^5/4^4 + 96*x^6/4^5 - 564*x^7/4^6 - 672*x^8/4^7 + 17782*x^9/4^8 - 23232*x^10/4^9 - 150700*x^11/4^10 + 31328*x^12/4^11 + ...

%e SPECIFIC VALUES.

%e A(t) = 3 at t = 0.7974505378370343003451267990412475368480451135...

%e A(t) = 5/2 at t = 0.76521942129290360663050508795248283467273528299272...

%e A(t) = 2 at t = 0.72087935902801574221845019715702827377758681730558...

%e A(t) = 3/2 at t = 0.65614587043086605186186423048734410347397837010542...

%e A(t) = 1 at t = 0.55329257825045064604510648563868404064428412610006...

%e A(t) = 1/2 at t = 0.36885212407172053837959308718581567946754577165148...

%e A(4/5) = 3.04639791827460031098834746489882724258092426...

%e A(3/4) = 2.3085152427070861118573648623403955213681844300916...

%e A(2/3) = 1.5681888169382250959833931491973692522610217218632...

%e A(1/2) = 0.8198795330503962750204869589412995397389131828850...

%e A(1/3) = 0.4332475961307505208322404686096133187262861124027...

%e A(1/4) = 0.2981452060950792897168271259942284248293916912662...

%o (PARI) {a(n) = my(V=[1],A,B); for(i=1,n, V = concat(V,0); A = 4*subst(x*Ser(V),x,x/4); B = subst(A,x, x^2)/A;

%o V[#V] = 4^(#V-1)/2 * polcoef( sum(m=1,#V, subst(B,x, x^m +x*O(x^#V)) ) - A, #V) ); V[n]}

%o for(n=1,30,print1(a(n),", "))

%Y Cf. A378262, A008683.

%K nonn,new

%O 1,2

%A _Paul D. Hanna_, Dec 04 2024