login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A378262
G.f. satisfies A(x) = Sum_{n>=1} 2^(n-1) * A(x^(2*n))/A(x^n), with A(0) = 0 and A'(0) = 1.
2
1, 1, 3, 5, 14, 25, 60, 117, 257, 504, 1053, 2067, 4197, 8248, 16491, 32533, 64919, 128893, 257923, 515770, 1036024, 2080743, 4185781, 8411269, 16893534, 33867059, 67793691, 135460708, 270330258, 538950081, 1074174949, 2141296967, 4271640535, 8530158021, 17054867115, 34138204669, 68398842318
OFFSET
1,3
LINKS
FORMULA
G.f. A(x) = Sum_{n>=1} a(n)*x^n satisfies the following formulas.
(1) A(x) = Sum_{n>=1} 2^(n-1) * A(x^(2*n))/A(x^n).
(2) A(x) = Sum_{n>=1} x^n/(1 - 2*x^n) * ([x^n] A(x^2)/A(x)).
EXAMPLE
G.f.: A(x) = x + x^2 + 3*x^3 + 5*x^4 + 14*x^5 + 25*x^6 + 60*x^7 + 117*x^8 + 257*x^9 + 504*x^10 + 1053*x^11 + 2067*x^12 + 4197*x^13 + 8248*x^14 + 16491*x^15 + ...
where
A(x) = A(x^2)/A(x) + 2*A(x^4)/A(x^2) + 2^2*A(x^6)/A(x^3) + 2^3*A(x^8)/A(x^4) + 2^4*A(x^10)/A(x^5) + ... + 2^(n-1)*A(x^(2*n))/A(x^n) + ...
with
A(x^2)/A(x) = x - x^2 - x^3 - x^4 - 2*x^5 - x^6 - 4*x^7 - x^8 + 5*x^9 + 12*x^10 + 29*x^11 + 65*x^12 + 101*x^13 + 128*x^14 + 131*x^15 - 97*x^16 + ...
From the coefficients of x^n in A(x^2)/A(x) we may form A(x) like so
A(x) = x/(1-2*x) - x^2/(1-2*x^2) - x^3/(1-2*x^3) - x^4/(1-2*x^4) - 2*x^5/(1-2*x^5) - x^6/(1-2*x^6) - 4*x^7/(1-2*x^7) - x^8/(1-2*x^8) + 5*x^9/(1-2*x^9) + 12*x^10/(1-2*x^10) + 29*x^11/(1-2*x^11) + 65*x^12/(1-2*x^12) + ... + ([x^n] A(x^2)/A(x)) * x^n/(1 - 2*x^n) + ...
SPECIFIC VALUES.
A(t) = 3 at t = 0.43733814488282063301680910555646948170999223090757...
A(t) = 2 at t = 0.41397004526177482844685461509046496062468756075210...
A(t) = 3/2 at t = 0.39330222443727410417944329172595352498212069922925...
A(t) = 1 at t = 0.35749402156274824941243704576004713164226979305829...
A(t) = 2/3 at t = 0.31333794936725576481707196951511233228426643397267...
A(t) = 1/2 at t = 0.27748211306635183931075005365310539042990531754751...
A(2/5) = 1.63758629524692945778740862999490236385081146642444...
A(1/3) = 0.79365065960676358258532147504412273666409442743886...
A(1/4) = 0.40608804950229998821473272051417196450715525962124...
A(1/5) = 0.27936643003430423804549184204540603443863382773108...
PROG
(PARI) {a(n) = my(V=[1], A, B); for(i=1, n, V = concat(V, 0); A = x*Ser(V); B = subst(A, x, x^2)/A;
V[#V] = (1/2) * polcoef( sum(m=1, #V, 2^(m-1) * subst(B, x, x^m +x*O(x^#V)) ) - A, #V) ); V[n]}
for(n=1, 30, print1(a(n), ", "))
CROSSREFS
Cf. A378259.
Sequence in context: A372436 A295359 A104208 * A364314 A026777 A007136
KEYWORD
nonn,new
AUTHOR
Paul D. Hanna, Dec 05 2024
STATUS
approved