login
A378260
G.f. satisfies A(x) = A(x^2)/M(x), where M(x) = Sum_{n>=1} mu(n)*x^n and mu(n) = A008683(n), the Moebius function of n.
0
1, 1, 3, 4, 11, 15, 33, 50, 104, 161, 309, 500, 929, 1529, 2757, 4620, 8207, 13874, 24353, 41478, 72327, 123687, 214685, 368232, 637430, 1095201, 1892492, 3255372, 5619323, 9672701, 16685587, 28734098, 49547095, 85347087, 147130261, 253480414, 436911525, 752798677, 1297444411, 2235633198
OFFSET
1,3
LINKS
FORMULA
G.f. A(x) = Sum_{n>=1} a(n)*x^n satisfies the following formulas.
(1) A(x) = A(x^2)/M(x), where M(x) = Sum_{n>=1} mu(n)*x^n.
(2) x = Sum_{n>=1} A(x^(2*n)) / A(x^n).
a(n) ~ c * d^n, where d = 1.723262561763844024160437963573163520188527015264827413326383054228438457576... and c = 0.7859046910881843332272010625259660209978142303560254864659049088867251443... - Vaclav Kotesovec, Nov 30 2024
EXAMPLE
G.f. A(x) = x + x^2 + 3*x^3 + 4*x^4 + 11*x^5 + 15*x^6 + 33*x^7 + 50*x^8 + 104*x^9 + 161*x^10 + 309*x^11 + 500*x^12 + 929*x^13 + 1529*x^14 + 2757*x^15 + 4620*x^16 + ...
where A(x) = A(x^2)/M(x) with
M(x) = x - x^2 - x^3 - x^5 + x^6 - x^7 + x^10 - x^11 - x^13 + x^14 + x^15 - x^17 - x^19 + x^21 + x^22 - x^23 + x^26 - x^29 - x^30 + ... + mu(n)*x^n + ...
so that x = M(x) + M(x^2) + M(x^3) + M(x^4) + ... + M(x^n) + ...
Thus, because M(x) = A(x^2)/A(x), we have
x = A(x^2)/A(x) + A(x^4)/A(x^2) + A(x^6)/A(x^3) + A(x^8)/A(x^4) + A(x^10)/A(x^5) + A(x^12)/A(x^6) + ... + A(x^(2*n))/A(x^n) + ...
SPECIFIC VALUES.
A(t) = 1000 at t = 0.57983979082390078033201288097053684588681918658...
A(t) = 100 at t = 0.575850800621842491687274688724496083876096493693...
A(t) = 10 at t = 0.5429296775693301210019293351373468274776922745760...
A(t) = 9 at t = 0.53946231343810887800940222774498269502147986174360...
A(t) = 8 at t = 0.53525852440539581430297764508815311813586247192451...
A(t) = 7 at t = 0.53004645173922704662750351997680689150327151199058...
A(t) = 6 at t = 0.52339661111093477495939037490084005628700411644551...
A(t) = 5 at t = 0.51458419720941955692565375903201066787604036604586...
A(t) = 4 at t = 0.50227142127888616541434068019839636042944372636880...
A(t) = 3 at t = 0.48364898724179834772275350279540495722010623952244...
A(t) = 2 at t = 0.45148154417138074188660255689175385165406842883889...
A(t) = 1 at t = 0.37847838037693933849966786108068785599206753365459...
A(1/2) = 3.85113240762543882840278502418639089248043784485031...
where A(1/2) = A(1/4)/M(1/2)
with M(1/2) = 0.10201133481781036474303639393182435154361049251029...
A(1/3) = 0.70553754549458547877689262864744328280095059724850...
where A(1/3) = A(1/9)/M(1/3)
with M(1/3) = 0.18199538670263388782780010030056557322634498013538...
A(1/4) = 0.39285915746199878617465323026428187937371048080708...
where A(1/4) = A(1/16)/M(1/4)
with M(1/4) = 0.17108224791836356794497287128799432329181231331328...
A(1/5) = 0.27550965922396685715103103981428480321441405929553...
where A(1/5) = A(1/25)/M(1/5)
with M(1/5) = 0.15173128129604728456076208173747135942418710339130...
A(1/6) = 0.13414853338170816574291660065981488877610508998414...
A(1/9) = 0.12840457842551423371933936516424287719901492174905...
A(1/16) = 0.06721122777391310699668932733909384687045264984777...
A(1/25) = 0.04180343360348984362058625595257513524070610827394...
PROG
(PARI) {a(n) = my(A=x, M = sum(m=1, n, moebius(m)*x^m) +x*O(x^n));
for(i=1, #binary(n), A = subst(A, x, x^2)/M ); polcoef(A, n)}
for(n=1, 40, print1(a(n), ", "))
CROSSREFS
Sequence in context: A085368 A041405 A042483 * A002530 A042709 A231067
KEYWORD
nonn,new
AUTHOR
Paul D. Hanna, Nov 25 2024
STATUS
approved