login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A378257
G.f. A(x) satisfies A(x*A(x) - x^3*A'(x)) = x^2.
1
1, 1, 1, 3, 13, 65, 387, 2709, 21673, 195057, 1950547, 21456017, 257472123, 3347137599, 46859925639, 702898884585, 11246382147523, 191188496507891, 3441392937086571, 65386465804644849, 1307729316092328701, 27462315637938902721, 604170944034649445339, 13895931712796937242797
OFFSET
1,4
COMMENTS
All terms are odd.
Limit a(n)/(n-1)! = 0.537518285445620493117044794174835470291338509726127442574604...
LINKS
FORMULA
G.f. A(x) = Sum_{n>=1} a(n)*x^n satisfies the following formulas.
(1) A(x*A(x) - x^3*A'(x)) = x^2.
(2) A(x) = x^2*A'(x) + B(x^2)/x, where B(A(x)) = x.
(3) a(2*n) = (2*n-1)*a(2*n-1) for n >= 0.
(4) a(2*n+1) = (2*n)*a(2*n) + [x^(n+1)] B(x) for n >= 0, where B(A(x)) = x.
EXAMPLE
G.f.: A(x) = x + x^2 + x^3 + 3*x^4 + 13*x^5 + 65*x^6 + 387*x^7 + 2709*x^8 + 21673*x^9 + 195057*x^10 + 1950547*x^11 + 21456017*x^12 + ...
where A(x*A(x) - x^3*A'(x)) = x^2.
RELATED SERIES.
The derivative of A(x) wrt x begins
A'(x) = 1 + 2*x + 3*x^2 + 12*x^3 + 65*x^4 + 390*x^5 + 2709*x^6 + 21672*x^7 + 195057*x^8 + 1950570*x^9 + 21456017*x^10 + ...
where [x^(2*n)] A'(x) = [x^(2*n+2)] A(x) for n >= 0.
Let B(x) satisfy B(A(x)) = x, then
B(x) = x - x^2 + x^3 - 3*x^4 + x^5 - 23*x^6 - 81*x^7 - 747*x^8 - 5837*x^9 - 55467*x^10 - 568279*x^11 - 6414523*x^12 + ...
where B(x^2) = x*A(x) - x^3*A'(x).
PROG
(PARI) {a(n) = my(V=[0, 1], A=x); for(i=1, n, V = concat(V, 0); A = Ser(V);
V[#V] = polcoef(x^2 - subst(A, x, x*A - x^3*A' ), #V) ); polcoef(A, n)}
for(n=1, 40, print1(a(n), ", "))
CROSSREFS
Sequence in context: A232222 A241598 A155867 * A009102 A080227 A199143
KEYWORD
nonn,new
AUTHOR
Paul D. Hanna, Dec 04 2024
STATUS
approved