login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A378258
G.f. satisfies A(x) = B(x) + 5*A(x)^2 where B(A(x) - A(x)^2) = x.
1
1, 3, 22, 219, 2530, 31830, 422652, 5820099, 82226522, 1183598754, 17277560996, 254957527134, 3795103401236, 56900877433356, 858486641574392, 13025190180880851, 198640087778490698, 3043793354165966442, 46845889623804326292, 723896233987491887466, 11227150555314722435580
OFFSET
1,2
COMMENTS
Conjecture: a(n) is odd iff n is a power of 2.
Conjecture: a(n) is not congruent to 1 nor 5 (mod 6) for n > 1.
First negative term is at a(58).
LINKS
FORMULA
G.f. A(x) = Sum_{n>=1} a(n)*x^n satisfies the following formulas, wherein C(x) is the g.f. of the Catalan numbers (A000108 with offset 1).
(1) A(x) = B(x) + 5*A(x)^2 where B(A(x) - A(x)^2) = x.
(2) A(x) = C(5*B(x))/5 where B(A(x) - A(x)^2) = x and C(x) = x + C(x)^2.
(3) A(A(x) - A(x)^2) = C(5*x)/5 where C(x) = x + C(x)^2.
(4) A(x) = C(A(x) - A(x)^2) where C(x) = x + C(x)^2 (trivial).
(5) A(B(x)) = C(x) = x + C(x)^2 where B(A(x) - A(x)^2) = x.
(6) B(B(x)) = 5*x - 4*C(x) where B(A(x) - A(x)^2) = x and C(x) = x + C(x)^2.
EXAMPLE
G.f.: A(x) = x + 3*x^2 + 22*x^3 + 219*x^4 + 2530*x^5 + 31830*x^6 + 422652*x^7 + 5820099*x^8 + 82226522*x^9 + 1183598754*x^10 + ...
where A(x) = B(x) + 5*A(x)^2 with B(A(x) - A(x)^2) = x.
RELATED SERIES.
The Catalan series C(x) = x + C(x)^2 begins
C(x) = x + x^2 + 2*x^3 + 5*x^4 + 14*x^5 + 42*x^6 + 132*x^7 + ... + A000108(n-1)*x^n + ...
A(x)^2 = x^2 + 6*x^3 + 53*x^4 + 570*x^5 + 6858*x^6 + 88476*x^7 + 1195565*x^8 + 16684770*x^9 + 238312766*x^10 + 3462822372*x^11 + ...
A(x) - A(x)^2 = x + 2*x^2 + 16*x^3 + 166*x^4 + 1960*x^5 + 24972*x^6 + 334176*x^7 + 4624534*x^8 + 65541752*x^9 + 945285988*x^10 + ...
where A(A(x) - A(x)^2) = C(5*x)/5 = x + 5*x^2 + 50*x^3 + 625*x^4 + 8750*x^5 + 131250*x^6 + 2062500*x^7 + ... + 5^(n-1)*A000108(n-1)*x^n + ...
Let B(x) satisfy B(A(x) - A(x)^2) = x, then
B(x) = x - 2*x^2 - 8*x^3 - 46*x^4 - 320*x^5 - 2460*x^6 - 19728*x^7 - 157726*x^8 - 1197328*x^9 - 7965076*x^10 - 36550864*x^11 + 79262804*x^12 + ...
where B(B(x)) = 5*x - 4*C(x) = x - 4*x^2 - 8*x^3 - 20*x^4 - 56*x^5 - 168*x^6 - 528*x^7 - 1716*x^8 + ... + -4*A000108(n-1)*x^n + ...
PROG
(PARI) \\ [x^n] A(A(x) - A(x)^2) = 5^(n-1)*A000108(n-1)
{A000108(n) = binomial(2*n+1, n)/(2*n+1)}
{a(n) = my(V=[0, 1], A, m); for(i=1, n, V = concat(V, 0); A = Ser(V); m = #V-1;
V[m+1] = ( 5^(m-1)*A000108(m-1) - polcoef(subst(A, x, A-A^2), m) )/2 ); V[n+1]}
for(n=1, 30, print1(a(n), ", "))
CROSSREFS
Cf. A000108.
Sequence in context: A340474 A079489 A190526 * A141152 A372250 A066573
KEYWORD
sign,new
AUTHOR
Paul D. Hanna, Dec 03 2024
STATUS
approved