OFFSET
1,2
COMMENTS
Conjecture: a(n) is odd iff n is a power of 2.
Conjecture: a(n) is not congruent to 1 nor 5 (mod 6) for n > 1.
First negative term is at a(58).
LINKS
Paul D. Hanna, Table of n, a(n) for n = 1..300
FORMULA
G.f. A(x) = Sum_{n>=1} a(n)*x^n satisfies the following formulas, wherein C(x) is the g.f. of the Catalan numbers (A000108 with offset 1).
(1) A(x) = B(x) + 5*A(x)^2 where B(A(x) - A(x)^2) = x.
(2) A(x) = C(5*B(x))/5 where B(A(x) - A(x)^2) = x and C(x) = x + C(x)^2.
(3) A(A(x) - A(x)^2) = C(5*x)/5 where C(x) = x + C(x)^2.
(4) A(x) = C(A(x) - A(x)^2) where C(x) = x + C(x)^2 (trivial).
(5) A(B(x)) = C(x) = x + C(x)^2 where B(A(x) - A(x)^2) = x.
(6) B(B(x)) = 5*x - 4*C(x) where B(A(x) - A(x)^2) = x and C(x) = x + C(x)^2.
EXAMPLE
G.f.: A(x) = x + 3*x^2 + 22*x^3 + 219*x^4 + 2530*x^5 + 31830*x^6 + 422652*x^7 + 5820099*x^8 + 82226522*x^9 + 1183598754*x^10 + ...
where A(x) = B(x) + 5*A(x)^2 with B(A(x) - A(x)^2) = x.
RELATED SERIES.
The Catalan series C(x) = x + C(x)^2 begins
C(x) = x + x^2 + 2*x^3 + 5*x^4 + 14*x^5 + 42*x^6 + 132*x^7 + ... + A000108(n-1)*x^n + ...
A(x)^2 = x^2 + 6*x^3 + 53*x^4 + 570*x^5 + 6858*x^6 + 88476*x^7 + 1195565*x^8 + 16684770*x^9 + 238312766*x^10 + 3462822372*x^11 + ...
A(x) - A(x)^2 = x + 2*x^2 + 16*x^3 + 166*x^4 + 1960*x^5 + 24972*x^6 + 334176*x^7 + 4624534*x^8 + 65541752*x^9 + 945285988*x^10 + ...
where A(A(x) - A(x)^2) = C(5*x)/5 = x + 5*x^2 + 50*x^3 + 625*x^4 + 8750*x^5 + 131250*x^6 + 2062500*x^7 + ... + 5^(n-1)*A000108(n-1)*x^n + ...
Let B(x) satisfy B(A(x) - A(x)^2) = x, then
B(x) = x - 2*x^2 - 8*x^3 - 46*x^4 - 320*x^5 - 2460*x^6 - 19728*x^7 - 157726*x^8 - 1197328*x^9 - 7965076*x^10 - 36550864*x^11 + 79262804*x^12 + ...
where B(B(x)) = 5*x - 4*C(x) = x - 4*x^2 - 8*x^3 - 20*x^4 - 56*x^5 - 168*x^6 - 528*x^7 - 1716*x^8 + ... + -4*A000108(n-1)*x^n + ...
PROG
CROSSREFS
KEYWORD
sign,new
AUTHOR
Paul D. Hanna, Dec 03 2024
STATUS
approved