login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

G.f. satisfies A(x) = B(x) + 5*A(x)^2 where B(A(x) - A(x)^2) = x.
1

%I #6 Dec 03 2024 12:24:52

%S 1,3,22,219,2530,31830,422652,5820099,82226522,1183598754,17277560996,

%T 254957527134,3795103401236,56900877433356,858486641574392,

%U 13025190180880851,198640087778490698,3043793354165966442,46845889623804326292,723896233987491887466,11227150555314722435580

%N G.f. satisfies A(x) = B(x) + 5*A(x)^2 where B(A(x) - A(x)^2) = x.

%C Conjecture: a(n) is odd iff n is a power of 2.

%C Conjecture: a(n) is not congruent to 1 nor 5 (mod 6) for n > 1.

%C First negative term is at a(58).

%H Paul D. Hanna, <a href="/A378258/b378258.txt">Table of n, a(n) for n = 1..300</a>

%F G.f. A(x) = Sum_{n>=1} a(n)*x^n satisfies the following formulas, wherein C(x) is the g.f. of the Catalan numbers (A000108 with offset 1).

%F (1) A(x) = B(x) + 5*A(x)^2 where B(A(x) - A(x)^2) = x.

%F (2) A(x) = C(5*B(x))/5 where B(A(x) - A(x)^2) = x and C(x) = x + C(x)^2.

%F (3) A(A(x) - A(x)^2) = C(5*x)/5 where C(x) = x + C(x)^2.

%F (4) A(x) = C(A(x) - A(x)^2) where C(x) = x + C(x)^2 (trivial).

%F (5) A(B(x)) = C(x) = x + C(x)^2 where B(A(x) - A(x)^2) = x.

%F (6) B(B(x)) = 5*x - 4*C(x) where B(A(x) - A(x)^2) = x and C(x) = x + C(x)^2.

%e G.f.: A(x) = x + 3*x^2 + 22*x^3 + 219*x^4 + 2530*x^5 + 31830*x^6 + 422652*x^7 + 5820099*x^8 + 82226522*x^9 + 1183598754*x^10 + ...

%e where A(x) = B(x) + 5*A(x)^2 with B(A(x) - A(x)^2) = x.

%e RELATED SERIES.

%e The Catalan series C(x) = x + C(x)^2 begins

%e C(x) = x + x^2 + 2*x^3 + 5*x^4 + 14*x^5 + 42*x^6 + 132*x^7 + ... + A000108(n-1)*x^n + ...

%e A(x)^2 = x^2 + 6*x^3 + 53*x^4 + 570*x^5 + 6858*x^6 + 88476*x^7 + 1195565*x^8 + 16684770*x^9 + 238312766*x^10 + 3462822372*x^11 + ...

%e A(x) - A(x)^2 = x + 2*x^2 + 16*x^3 + 166*x^4 + 1960*x^5 + 24972*x^6 + 334176*x^7 + 4624534*x^8 + 65541752*x^9 + 945285988*x^10 + ...

%e where A(A(x) - A(x)^2) = C(5*x)/5 = x + 5*x^2 + 50*x^3 + 625*x^4 + 8750*x^5 + 131250*x^6 + 2062500*x^7 + ... + 5^(n-1)*A000108(n-1)*x^n + ...

%e Let B(x) satisfy B(A(x) - A(x)^2) = x, then

%e B(x) = x - 2*x^2 - 8*x^3 - 46*x^4 - 320*x^5 - 2460*x^6 - 19728*x^7 - 157726*x^8 - 1197328*x^9 - 7965076*x^10 - 36550864*x^11 + 79262804*x^12 + ...

%e where B(B(x)) = 5*x - 4*C(x) = x - 4*x^2 - 8*x^3 - 20*x^4 - 56*x^5 - 168*x^6 - 528*x^7 - 1716*x^8 + ... + -4*A000108(n-1)*x^n + ...

%o (PARI) \\ [x^n] A(A(x) - A(x)^2) = 5^(n-1)*A000108(n-1)

%o {A000108(n) = binomial(2*n+1,n)/(2*n+1)}

%o {a(n) = my(V=[0,1],A,m); for(i=1,n, V = concat(V,0); A = Ser(V); m = #V-1;

%o V[m+1] = ( 5^(m-1)*A000108(m-1) - polcoef(subst(A,x,A-A^2),m) )/2 ); V[n+1]}

%o for(n=1,30,print1(a(n),", "))

%Y Cf. A000108.

%K sign,new

%O 1,2

%A _Paul D. Hanna_, Dec 03 2024