login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A155867
A 'Morgan Voyce' transform of the large Schroeder numbers A006318.
1
1, 3, 13, 65, 355, 2061, 12501, 78323, 503033, 3294373, 21916883, 147708777, 1006330457, 6919474163, 47956087733, 334658965641, 2349535729811, 16583609673797, 117608812053277, 837626242775875, 5988634758319665
OFFSET
0,2
COMMENTS
Image of A006318 under the Riordan array (1/(1-x), x/(1-x)^2).
LINKS
Veronica Bitonti, Bishal Deb, and Alan D. Sokal, Thron-type continued fractions (T-fractions) for some classes of increasing trees, arXiv:2412.10214 [math.CO], 2024. See p. 58.
FORMULA
G.f.: (1 - 3*x + x^2 - sqrt(1 - 10*x + 19*x^2 - 10*x^3 + x^4))/(2*x*(1-x)).
G.f.: 1/(1 -x -2*x/(1 -x -x/(1 -x -2*x/(1 -x -x/(1 -x -2*x/(1 -x -x/(1 - ... (continued fraction).
a(n) = Sum_{k=0..n} binomial(n+k,2k)*A006318(k).
a(n) = Sum_{k=0..n} A085478(n,k)*A006318(k). - Philippe Deléham, Jan 31 2009
Conjecture: (n+1)*a(n) + (4-11*n)*a(n-1) + (29*n-43)*a(n-2) +(73-29*n)*a(n-3) + (11*n-40)*a(n-4) + (5-n)*a(n-5) = 0. - R. J. Mathar, Jul 24 2012
The above recurrence follows from the differential equation (4*x^4 - 14*x^3 + 15*x^2 - 7*x + 1)*A(x) - (x^6 - 11*x^5 + 29*x^4 - 29*x^3 + 11*x^2 - x)*A'(x) + x^4 - x^3 + x - 1 = 0 satisfied by the g.f. A(x). - Peter Bala, Sep 15 2024
MATHEMATICA
A006318[n_]:= 2*Hypergeometric2F1[-n+1, n+2, 2, -1];
A155867[n_]:= Sum[Binomial[n+j, 2*j]*A006318[j], {j, 0, n}];
Table[A155867[n], {n, 0, 40}] (* G. C. Greubel, Jun 09 2021 *)
PROG
(Magma) R<x>:=PowerSeriesRing(Rationals(), 40); Coefficients(R!( (1-3*x+x^2 -Sqrt(1-10*x+19*x^2-10*x^3+x^4))/(2*x*(1-x)) )); // G. C. Greubel, Jun 09 2021
(Sage)
def A155867_list(prec):
P.<x> = PowerSeriesRing(ZZ, prec)
return P( (1-3*x+x^2 -sqrt(1-10*x+19*x^2-10*x^3+x^4))/(2*x*(1-x)) ).list()
A155867_list(40) # G. C. Greubel, Jun 09 2021
CROSSREFS
Sequence in context: A141342 A232222 A241598 * A378257 A009102 A080227
KEYWORD
easy,nonn,changed
AUTHOR
Paul Barry, Jan 29 2009
STATUS
approved