login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A141342
A transform of the Fibonacci numbers.
1
1, 1, -1, 3, -13, 65, -353, 2025, -12077, 74143, -465481, 2974863, -19289821, 126594191, -839273105, 5612483619, -37814455781, 256447068841, -1749182184793, 11991887667273, -82588248514885, 571118483653841
OFFSET
0,4
COMMENTS
A transform of F(n+1) by the inverse of the Riordan array (1, x*(1+x)/(1-2*x)).
Equivalently, row sums of the inverse of the Riordan array (1, x/(2-sqrt(1+4*x)).
Hankel transform is alternating sign version of A083667.
LINKS
FORMULA
G.f.: 1/(1-2*x-2*x^2+x*sqrt(1+8*x+4*x^2)).
Conjecture: (n-1)*a(n) +4*(n-4)*a(n-1) + (65-29*n)*a(n-2) +12*(7-2*n)*a(n-3)+ 4*(4-n)*a(n-4) =0. - R. J. Mathar, Nov 14 2011
a(n) ~ (-1)^n * (5*sqrt(3)-14) * sqrt(2*sqrt(3)-3) * 2^(n+1/2) * (2+sqrt(3))^n / (121 * sqrt(Pi) * n^(3/2)). - Vaclav Kotesovec, Feb 01 2014
MATHEMATICA
CoefficientList[Series[1/(1-2*x-2*x^2+x*Sqrt[1+8*x+4*x^2]), {x, 0, 20}], x] (* Vaclav Kotesovec, Feb 01 2014 *)
PROG
(PARI) x='x+O('x^50); Vec(1/(1-2*x-2*x^2+x*sqrt(1+8*x+4*x^2))) \\ G. C. Greubel, Mar 21 2017
CROSSREFS
Cf. A141343.
Sequence in context: A284715 A364473 A186577 * A232222 A241598 A155867
KEYWORD
easy,sign
AUTHOR
Paul Barry, Jun 26 2008
STATUS
approved