OFFSET
1,2
COMMENTS
According to Brouwers et al., Deshouillers et al. showed that the maximum term of this sequence is 210. A141341 is a subsequence.
Positive integers k such that, for each prime p with k/2 <= p <= k - 2, k - p is prime. - Charles R Greathouse IV, May 28 2017
LINKS
J-M. Deshouillers, A. Granville, W. Narkiewicz and C. Pomerance, An upper bound in Goldbach's problem, Math. Comp. 61 (1993), 209-213.
Brady Haran and Carl Pomerance, 210 is VERY Goldbachy, Numberphile video (2017)
David van Golstein Brouwers, John Bamberg and Grant Cairns, Totally Goldbach numbers and related conjectures, The Australian Mathematical Society, Gazette, Volume 31 Number 4, September 2004.
EXAMPLE
For each prime 210/2 <= p <= 210, 210 - p is prime, and so 210 is in this sequence: 210 - 107 = 103, 210 - 109 = 101, 210 - 113 = 97, 210 - 127 = 83, 210 - 131 = 79, 210 - 137 = 73, 210 - 139 = 71, 210 - 149 = 61, 210 - 151 = 59, 210 - 157 = 53, 210 - 163 = 47, 210 - 167 = 43, 210 - 173 = 37, 210 - 179 = 31, 210 - 181 = 29, 210 - 191 = 19, 210 - 193 = 17, 210 - 197 = 13, 210 - 199 = 11. - Charles R Greathouse IV, May 28 2017
MATHEMATICA
Block[{r = {}}, Do[ If[ AllTrue[i - #, PrimeQ] &@ NextPrime[i/2, Range[ PrimePi[i - 2] - PrimePi[i/2]]], AppendTo[r, i]], {i, 210}]; r] (* Mikk Heidemaa, May 29 2024 *)
PROG
(PARI) is(n)=forprime(p=n/2, n-2, if(!isprime(n-p), return(0))); 1 \\ Charles R Greathouse IV, May 28 2017; corrected by Michel Marcus, May 30 2024
CROSSREFS
KEYWORD
nonn,nice,fini,full
AUTHOR
Rick L. Shepherd, Jun 25 2008
STATUS
approved