%I #7 Oct 13 2017 15:49:42
%S 1,2,3,4,5,6,7,8,10,12,14,16,18,24,30,36,42,48,60,90,210
%N Positive integers n such that A061358(n) = #{primes p | n/2 <= p < n-1}.
%C According to Brouwers et al., Deshouillers et al. showed that the maximum term of this sequence is 210. A141341 is a subsequence.
%H J-M. Deshouillers, A. Granville, W. Narkiewicz and C. Pomerance, <a href="https://doi.org/10.1090/S0025-5718-1993-1202609-9">An upper bound in Goldbach's problem</a>, Math. Comp. 61 (1993), 209-213.
%H David van Golstein Brouwers, John Bamberg and Grant Cairns, <a href="http://www.austms.org.au/Publ/Gazette/2004/Sep04/brouwers.pdf">Totally Goldbach numbers and related conjectures</a>, The Australian Mathematical Society, Gazette, Volume 31 Number 4, September 2004.
%Y Cf. A061358, A141341.
%K fini,full,nonn
%O 1,2
%A _Rick L. Shepherd_, Jun 25 2008