login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A008726
Molien series 1/((1-x)^2*(1-x^8)) for 3-dimensional group [2,n] = *22n.
6
1, 2, 3, 4, 5, 6, 7, 8, 10, 12, 14, 16, 18, 20, 22, 24, 27, 30, 33, 36, 39, 42, 45, 48, 52, 56, 60, 64, 68, 72, 76, 80, 85, 90, 95, 100, 105, 110, 115, 120, 126, 132, 138, 144, 150, 156, 162, 168, 175, 182, 189, 196, 203, 210, 217, 224, 232, 240, 248, 256, 264, 272, 280
OFFSET
0,2
FORMULA
G.f.: 1/((1-x)^2*(1-x^8)).
From Mitch Harris, Sep 08 2008: (Start)
a(n) = Sum_{j=0..n+8} floor(j/8).
a(n-8) = (1/2)*floor(n/8)*(2*n-6-8*floor(n/8)). (End)
a(n) = 2*a(n-1) - a(n-2) + a(n-8) - 2*a(n-9) + a(n-10). - R. J. Mathar, Apr 20 2010
MAPLE
seq(coeff(series(1/(1-x)^2/(1-x^8), x, n+1), x, n), n=0..80);
MATHEMATICA
CoefficientList[Series[1/((1-x)^2*(1-x^8)), {x, 0, 80}], x] (* Vincenzo Librandi, Jun 11 2013 *)
LinearRecurrence[{2, -1, 0, 0, 0, 0, 0, 1, -2, 1}, {1, 2, 3, 4, 5, 6, 7, 8, 10, 12}, 80] (* Harvey P. Dale, Jan 07 2015 *)
PROG
(PARI) my(x='x+O('x^80)); Vec(1/((1-x)^2*(1-x^8))) \\ G. C. Greubel, Sep 09 2019
(Magma) R<x>:=PowerSeriesRing(Integers(), 80); Coefficients(R!( 1/((1-x)^2*(1-x^8)) )); // G. C. Greubel, Sep 09 2019
(Sage)
def A008726_list(prec):
P.<x> = PowerSeriesRing(ZZ, prec)
return P(1/((1-x)^2*(1-x^8))).list()
A008726_list(80) # G. C. Greubel, Sep 09 2019
(GAP) a:=[1, 2, 3, 4, 5, 6, 7, 8, 10, 12];; for n in [11..80] do a[n]:=2*a[n-1] -a[n-2]+a[n-8]-2*a[n-9]+a[n-10]; od; a; # G. C. Greubel, Sep 09 2019
KEYWORD
nonn,easy
EXTENSIONS
More terms from Vladimir Joseph Stephan Orlovsky, Mar 14 2010
Minor edits by Jon E. Schoenfield, Mar 28 2014
STATUS
approved