OFFSET
0,2
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 0..1000
INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 191
Index entries for linear recurrences with constant coefficients, signature (2,-1,0,0,0,0,0,1,-2,1).
FORMULA
G.f.: 1/((1-x)^2*(1-x^8)).
From Mitch Harris, Sep 08 2008: (Start)
a(n) = Sum_{j=0..n+8} floor(j/8).
a(n-8) = (1/2)*floor(n/8)*(2*n-6-8*floor(n/8)). (End)
a(n) = 2*a(n-1) - a(n-2) + a(n-8) - 2*a(n-9) + a(n-10). - R. J. Mathar, Apr 20 2010
MAPLE
seq(coeff(series(1/(1-x)^2/(1-x^8), x, n+1), x, n), n=0..80);
MATHEMATICA
CoefficientList[Series[1/((1-x)^2*(1-x^8)), {x, 0, 80}], x] (* Vincenzo Librandi, Jun 11 2013 *)
LinearRecurrence[{2, -1, 0, 0, 0, 0, 0, 1, -2, 1}, {1, 2, 3, 4, 5, 6, 7, 8, 10, 12}, 80] (* Harvey P. Dale, Jan 07 2015 *)
PROG
(PARI) my(x='x+O('x^80)); Vec(1/((1-x)^2*(1-x^8))) \\ G. C. Greubel, Sep 09 2019
(Magma) R<x>:=PowerSeriesRing(Integers(), 80); Coefficients(R!( 1/((1-x)^2*(1-x^8)) )); // G. C. Greubel, Sep 09 2019
(Sage)
def A008726_list(prec):
P.<x> = PowerSeriesRing(ZZ, prec)
return P(1/((1-x)^2*(1-x^8))).list()
A008726_list(80) # G. C. Greubel, Sep 09 2019
(GAP) a:=[1, 2, 3, 4, 5, 6, 7, 8, 10, 12];; for n in [11..80] do a[n]:=2*a[n-1] -a[n-2]+a[n-8]-2*a[n-9]+a[n-10]; od; a; # G. C. Greubel, Sep 09 2019
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
EXTENSIONS
More terms from Vladimir Joseph Stephan Orlovsky, Mar 14 2010
Minor edits by Jon E. Schoenfield, Mar 28 2014
STATUS
approved