login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A008728
Molien series for 3-dimensional group [2,n ] = *22n.
9
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 33, 36, 39, 42, 45, 48, 51, 54, 57, 60, 64, 68, 72, 76, 80, 84, 88, 92, 96, 100, 105, 110, 115, 120, 125, 130, 135, 140, 145, 150, 156, 162, 168, 174, 180, 186, 192, 198, 204, 210, 217, 224, 231, 238
OFFSET
0,2
COMMENTS
a(n) = A179052(n) for n < 100. - Reinhard Zumkeller, Jun 27 2010
FORMULA
G.f.: 1/((1-x)^2*(1-x^10)).
From Mitch Harris, Sep 08 2008: (Start)
a(n) = Sum_{j=0..n+10} floor(j/10).
a(n-10) = (1/2)*floor(n/10)*(2*n - 8 - 10*floor(n/10)). (End)
MAPLE
g:= 1/((1-x)^2*(1-x^10)); gser:= series(g, x=0, 72); seq(coeff(gser, x, n), n=0..70); # modified by G. C. Greubel, Jul 30 2019
MATHEMATICA
CoefficientList[Series[1/((1-x)^2(1-x^10)), {x, 0, 70}], x] (* Vincenzo Librandi, Jun 11 2013 *)
PROG
(PARI) my(x='x+O('x^70)); Vec(1/((1-x)^2*(1-x^10))) \\ G. C. Greubel, Jul 30 2019
(Magma) R<x>:=PowerSeriesRing(Integers(), 70); Coefficients(R!( 1/((1-x)^2*(1-x^10)) )); // G. C. Greubel, Jul 30 2019
(Sage) (1/((1-x)^2*(1-x^10))).series(x, 70).coefficients(x, sparse=False) # G. C. Greubel, Jul 30 2019
(GAP) a:=[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14];; for n in [13..70] do a[n]:=2*a[n-1]-a[n-2]+a[n-10]-2*a[n-11]+a[n-12]; od; a; # G. C. Greubel, Jul 30 2019
KEYWORD
nonn,easy
EXTENSIONS
More terms from Vladimir Joseph Stephan Orlovsky, Mar 14 2010
STATUS
approved