login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A008728 Molien series for 3-dimensional group [2,n ] = *22n. 5

%I

%S 1,2,3,4,5,6,7,8,9,10,12,14,16,18,20,22,24,26,28,30,33,36,39,42,45,48,

%T 51,54,57,60,64,68,72,76,80,84,88,92,96,100,105,110,115,120,125,130,

%U 135,140,145,150,156,162,168,174,180,186,192,198,204,210,217,224,231,238

%N Molien series for 3-dimensional group [2,n ] = *22n.

%C a(n) = A179052(n) for n < 100. [_Reinhard Zumkeller_, Jun 27 2010]

%H Vincenzo Librandi, <a href="/A008728/b008728.txt">Table of n, a(n) for n = 0..1000</a>

%H INRIA Algorithms Project, <a href="http://algo.inria.fr/ecs/ecs?searchType=1&amp;service=Search&amp;searchTerms=193">Encyclopedia of Combinatorial Structures 193</a>

%H <a href="/index/Mo#Molien">Index entries for Molien series</a>

%F G.f.: 1/((1-x)^2*(1-x^10)).

%F a(n) = sum(floor(j/10), {j,0,n+10}), a(n-10) = (1/2)floor(n/10)*(2n-8-10*floor(n/10)). [_Mitch Harris_, Sep 08 2008]

%p 1/(1-x)^2/(1-x^10)

%t s=0;lst={};Do[AppendTo[lst,s+=n];AppendTo[lst,s+=n];AppendTo[lst,s+=n];AppendTo[lst,s+=n];AppendTo[lst,s+=n];AppendTo[lst,s+=n];AppendTo[lst,s+=n];AppendTo[lst,s+=n];AppendTo[lst,s+=n];AppendTo[lst,s+=n],{n,0,5!}];lst (* _Vladimir Joseph Stephan Orlovsky_, Mar 14 2010 *)

%t CoefficientList[Series[1 / ((1 - x)^2 (1 - x^10)), {x, 0, 70}], x] (* _Vincenzo Librandi_, Jun 11 2013 *)

%Y Cf. A001840, A001972, A008724, A008725, A008726, A008727, A008732.

%K nonn,easy

%O 0,2

%A _N. J. A. Sloane_.

%E More terms from _Vladimir Joseph Stephan Orlovsky_, Mar 14 2010

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 5 19:19 EST 2016. Contains 278770 sequences.