login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A008723
Molien series for 3-dimensional group [2,11] = *2 2 11.
1
1, 0, 2, 0, 3, 0, 4, 0, 5, 0, 6, 1, 7, 2, 8, 3, 9, 4, 10, 5, 11, 6, 13, 7, 15, 8, 17, 9, 19, 10, 21, 11, 23, 13, 25, 15, 27, 17, 29, 19, 31, 21, 33, 23, 36, 25, 39, 27, 42, 29, 45, 31, 48, 33, 51, 36, 54, 39, 57, 42, 60
OFFSET
0,3
FORMULA
G.f.: 1/((1-x^2)^2*(1-x^11)).
a(n) ~ 1/88*n^2. - Ralf Stephan, Apr 29 2014
MAPLE
seq(coeff(series(1/((1-x^2)^2*(1-x^11)), x, n+1), x, n), n = 0 .. 80); # G. C. Greubel, Sep 09 2019
MATHEMATICA
CoefficientList[Series[1/(1-x^2)^2/(1-x^11), {x, 0, 80}], x] (* Wesley Ivan Hurt, Mar 30 2017 *)
LinearRecurrence[{0, 2, 0, -1, 0, 0, 0, 0, 0, 0, 1, 0, -2, 0, 1}, {1, 0, 2, 0, 3, 0, 4, 0, 5, 0, 6, 1, 7, 2, 8}, 70] (* Harvey P. Dale, Jun 22 2019 *)
PROG
(PARI) my(x='x+O('x^80)); Vec(1/((1-x^2)^2*(1-x^11))) \\ G. C. Greubel, Sep 09 2019
(Magma) R<x>:=PowerSeriesRing(Integers(), 80); Coefficients(R!( 1/((1-x^2)^2*(1-x^11)) )); // G. C. Greubel, Sep 09 2019
(Sage)
def A008723_list(prec):
P.<x> = PowerSeriesRing(ZZ, prec)
return P(1/((1-x^2)^2*(1-x^11))).list()
A008723_list(80) # G. C. Greubel, Sep 09 2019
(GAP) a:=[1, 0, 2, 0, 3, 0, 4, 0, 5, 0, 6, 1, 7, 2, 8];; for n in [16..80] do a[n]:=2*a[n-2]-a[n-4]+a[n-11]-2*a[n-13]+a[n-15]; od; a; # G. C. Greubel, Sep 09 2019
CROSSREFS
Sequence in context: A326834 A034948 A135472 * A263397 A008803 A349375
KEYWORD
nonn
STATUS
approved