login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A008721
Molien series for 3-dimensional group [2,7] = *227.
1
1, 0, 2, 0, 3, 0, 4, 1, 5, 2, 6, 3, 7, 4, 9, 5, 11, 6, 13, 7, 15, 9, 17, 11, 19, 13, 21, 15, 24, 17, 27, 19, 30, 21, 33, 24, 36, 27, 39, 30, 42, 33, 46, 36, 50, 39, 54, 42, 58, 46, 62, 50, 66, 54, 70, 58, 75, 62, 80, 66, 85, 70, 90, 75, 95, 80, 100, 85, 105, 90, 111, 95, 117, 100, 123
OFFSET
0,3
FORMULA
G.f.: 1/((1-x^2)^2*(1-x^7)).
MAPLE
1/((1-x^2)^2*(1-x^7)); seq(coeff(series(%, x, n+1), x, n), n = 0..80); # modified by G. C. Greubel, Sep 09 2019
MATHEMATICA
LinearRecurrence[{0, 2, 0, -1, 0, 0, 1, 0, -2, 0, 1}, {1, 0, 2, 0, 3, 0, 4, 1, 5, 2, 6}, 80] (* G. C. Greubel, Sep 09 2019 *)
PROG
(PARI) my(x='x+O('x^80)); Vec(1/((1-x^2)^2*(1-x^7))) \\ G. C. Greubel, Sep 09 2019
(Magma) R<x>:=PowerSeriesRing(Integers(), 80); Coefficients(R!( 1/((1-x^2)^2*(1-x^7)) )); // G. C. Greubel, Sep 09 2019
(Sage)
def A008721_list(prec):
P.<x> = PowerSeriesRing(ZZ, prec)
return P( 1/((1-x^2)^2*(1-x^7)) ).list()
A008721_list(80) # G. C. Greubel, Sep 09 2019
(GAP) a:=[1, 0, 2, 0, 3, 0, 4, 1, 5, 2, 6];; for n in [12..80] do a[n]:=2*a[n-2]-a[n-4]+a[n-7] -2*a[n-9]+a[n-11]; od; a; # G. C. Greubel, Sep 09 2019
CROSSREFS
Sequence in context: A284976 A008743 A029179 * A008735 A239241 A263395
KEYWORD
nonn
EXTENSIONS
Terms a(60) onward added by G. C. Greubel, Sep 09 2019
STATUS
approved