login
A008721
Molien series for 3-dimensional group [2,7] = *227.
1
1, 0, 2, 0, 3, 0, 4, 1, 5, 2, 6, 3, 7, 4, 9, 5, 11, 6, 13, 7, 15, 9, 17, 11, 19, 13, 21, 15, 24, 17, 27, 19, 30, 21, 33, 24, 36, 27, 39, 30, 42, 33, 46, 36, 50, 39, 54, 42, 58, 46, 62, 50, 66, 54, 70, 58, 75, 62, 80, 66, 85, 70, 90, 75, 95, 80, 100, 85, 105, 90, 111, 95, 117, 100, 123
OFFSET
0,3
FORMULA
G.f.: 1/((1-x^2)^2*(1-x^7)).
MAPLE
1/((1-x^2)^2*(1-x^7)); seq(coeff(series(%, x, n+1), x, n), n = 0..80); # modified by G. C. Greubel, Sep 09 2019
MATHEMATICA
LinearRecurrence[{0, 2, 0, -1, 0, 0, 1, 0, -2, 0, 1}, {1, 0, 2, 0, 3, 0, 4, 1, 5, 2, 6}, 80] (* G. C. Greubel, Sep 09 2019 *)
PROG
(PARI) my(x='x+O('x^80)); Vec(1/((1-x^2)^2*(1-x^7))) \\ G. C. Greubel, Sep 09 2019
(Magma) R<x>:=PowerSeriesRing(Integers(), 80); Coefficients(R!( 1/((1-x^2)^2*(1-x^7)) )); // G. C. Greubel, Sep 09 2019
(Sage)
def A008721_list(prec):
P.<x> = PowerSeriesRing(ZZ, prec)
return P( 1/((1-x^2)^2*(1-x^7)) ).list()
A008721_list(80) # G. C. Greubel, Sep 09 2019
(GAP) a:=[1, 0, 2, 0, 3, 0, 4, 1, 5, 2, 6];; for n in [12..80] do a[n]:=2*a[n-2]-a[n-4]+a[n-7] -2*a[n-9]+a[n-11]; od; a; # G. C. Greubel, Sep 09 2019
CROSSREFS
Sequence in context: A284976 A008743 A029179 * A008735 A239241 A263395
KEYWORD
nonn
EXTENSIONS
Terms a(60) onward added by G. C. Greubel, Sep 09 2019
STATUS
approved