login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A141339
Primes of the form -x^2+9*x*y+3*y^2 (as well as of the form 11*x^2+15*x*y+3*y^2).
2
3, 11, 17, 23, 29, 53, 83, 89, 137, 167, 179, 197, 239, 251, 263, 269, 347, 353, 383, 389, 401, 449, 461, 491, 509, 557, 569, 587, 641, 647, 677, 719, 743, 761, 773, 797, 809, 821, 827, 863, 881, 911, 929, 941, 947, 953, 983, 1013, 1019, 1049, 1091, 1097
OFFSET
1,1
COMMENTS
Discriminant = 93. Class = 2. Binary quadratic forms a*x^2 + b*x*y + c*y^2 have discriminant d = b^2 - 4ac.
REFERENCES
Z. I. Borevich and I. R. Shafarevich, Number Theory.
LINKS
N. J. A. Sloane et al., Binary Quadratic Forms and OEIS: Index to related sequences, programs, references. OEIS wiki, June 2014.
D. B. Zagier, Zetafunktionen und quadratische Körper, Springer, 1981.
EXAMPLE
a(5) = 29 because we can write 29 = -1^2 + 9*1*2 + 3*2^2 (or 29 = 11*1^2 + 15*1*1 + 3*1^2).
CROSSREFS
Cf. A141338 (d=93).
Sequence in context: A056983 A175073 A062284 * A069348 A165561 A038960
KEYWORD
nonn
AUTHOR
Laura Caballero Fernandez, Lourdes Calvo Moguer, Maria Josefa Cano Marquez, Oscar Jesus Falcon Ganfornina and Sergio Garrido Morales (oscfalgan(AT)yahoo.es), Jun 25 2008
EXTENSIONS
More terms from Colin Barker, Apr 05 2015
STATUS
approved