login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Primes of the form -x^2+9*x*y+3*y^2 (as well as of the form 11*x^2+15*x*y+3*y^2).
2

%I #13 Feb 18 2022 15:40:41

%S 3,11,17,23,29,53,83,89,137,167,179,197,239,251,263,269,347,353,383,

%T 389,401,449,461,491,509,557,569,587,641,647,677,719,743,761,773,797,

%U 809,821,827,863,881,911,929,941,947,953,983,1013,1019,1049,1091,1097

%N Primes of the form -x^2+9*x*y+3*y^2 (as well as of the form 11*x^2+15*x*y+3*y^2).

%C Discriminant = 93. Class = 2. Binary quadratic forms a*x^2 + b*x*y + c*y^2 have discriminant d = b^2 - 4ac.

%D Z. I. Borevich and I. R. Shafarevich, Number Theory.

%H N. J. A. Sloane et al., <a href="/wiki/Binary_Quadratic_Forms_and_OEIS">Binary Quadratic Forms and OEIS</a>: Index to related sequences, programs, references. OEIS wiki, June 2014.

%H D. B. Zagier, <a href="https://doi.org/10.1007/978-3-642-61829-1">Zetafunktionen und quadratische Körper</a>, Springer, 1981.

%e a(5) = 29 because we can write 29 = -1^2 + 9*1*2 + 3*2^2 (or 29 = 11*1^2 + 15*1*1 + 3*1^2).

%Y Cf. A141338 (d=93).

%K nonn

%O 1,1

%A Laura Caballero Fernandez, Lourdes Calvo Moguer, Maria Josefa Cano Marquez, Oscar Jesus Falcon Ganfornina and Sergio Garrido Morales (oscfalgan(AT)yahoo.es), Jun 25 2008

%E More terms from _Colin Barker_, Apr 05 2015