login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A175073
Primes q with result 1 under iterations of {r mod (max prime p < r)} starting at r = q.
3
3, 11, 17, 23, 29, 37, 41, 47, 53, 59, 67, 71, 79, 83, 89, 97, 101, 107, 113, 127, 131, 137, 149, 157, 163, 167, 173, 179, 191, 197, 211, 223, 227, 233, 239, 251, 257, 263, 269, 277, 281, 293, 307
OFFSET
1,1
COMMENTS
Subsequence of A175071.
Union of a(n) and A175074 is A175071. - Jaroslav Krizek, Jan 30 2010
The terms in A025584 but not in here are 2, 2999, 3299, 5147, 5981, 8999, 9587, ... , apparently those listed in A175080. - R. J. Mathar, Feb 01 2010
a(n-1)=A156828(n) in the range n=3..348, but afterwards the sequences differ because numbers like 2999 and 3229 are in A156828 but not in here. - R. J. Mathar, Mar 01 2010
Conjecture: under this iteration procedure, all primes eventually will yield either a 2 or a 1. If a 2 results, all subsequent terms are zeros; if a 1 results, all subsequent terms are -1s. The conjecture is true for the first 2 million primes. - Harvey P. Dale, Jan 17 2014
LINKS
EXAMPLE
Iteration procedure for a(2) = 11: 11 mod 7 = 4, 4 mod 3 = 1.
MAPLE
isA175073 := proc(p)
local r, rold;
if not isprime(p) then
return false;
end if;
r := p ;
while true do
rold :=r ;
if r = 2 then
return false ;
end if;
r := modp(r, prevprime(r)) ;
if r = 1 then
return true;
elif r= rold then
return false ;
end if;
end do:
end proc:
A175073 := proc(n)
option remember ;
if n= 1 then
3;
else
for p from procname(n-1)+2 by 2 do
if isA175073(p) then
return p;
end if;
end do:
end if;
end proc:
seq(A175073(n), n=1..40) ; # R. J. Mathar, Mar 25 2024
MATHEMATICA
r1Q[n_] := FixedPoint[Mod[#, NextPrime[#, -1]] &, n] == -1; Select[Prime[ Range[70]], r1Q] (* This program relies upon the conjecture described in the comments above *) (* Harvey P. Dale, Jan 17 2014 *)
CROSSREFS
Note that all three of A025584, A156828, A175073 are different sequences. - N. J. A. Sloane, Apr 10 2011
Sequence in context: A322962 A075334 A056983 * A062284 A141339 A069348
KEYWORD
nonn
AUTHOR
Jaroslav Krizek, Jan 23 2010
STATUS
approved