login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A175070
a(n) is the sum of perfect divisors of n - n, where a perfect divisor of n is a divisor d such that d^k = n for some k >= 1.
3
0, 0, 0, 2, 0, 0, 0, 2, 3, 0, 0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 0, 0, 0, 5, 0, 3, 0, 0, 0, 0, 2, 0, 0, 0, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 7, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 14, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 12, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 10
OFFSET
1,4
COMMENTS
a(1) = 0, for n >=2: a(n) = sum of perfect divisors of n less than n.
a(n) > 0 for perfect powers n = A001597(m) for m > 2.
FORMULA
a(n) = A175067(n) - n.
MAPLE
a:= n-> add(`if`(n=d^ilog[d](n), d, 0), d=numtheory[divisors](n) minus {n}):
seq(a(n), n=1..100); # Alois P. Heinz, Dec 12 2024
PROG
(PARI) A175070(n) = if(!ispower(n), 0, sumdiv(n, d, if((d>1)&&(d<n)&&((d^valuation(n, d))==n), d, 0))); \\ Antti Karttunen, Jun 12 2018
(PARI) first(n) = {my(res = vector(n)); for(i = 2, sqrtint(n), for(j = 2, logint(n, i), res[i^j] += i)); res} \\ David A. Corneth, Jun 12 2018
CROSSREFS
Cf. A175067.
Sequence in context: A340455 A275964 A284272 * A343873 A054923 A263145
KEYWORD
nonn,changed
AUTHOR
Jaroslav Krizek, Jan 23 2010
STATUS
approved