login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A340455
G.f.: Sum_{n>=0} x^(2*n)/(1 - x^(5*n+2)) - x*Sum_{n>=0} x^(3*n)/(1 - x^(5*n+3)).
8
1, -1, 2, 0, 0, 0, 2, -2, 2, 1, 0, 0, 1, -2, 2, 0, 2, 0, 2, -2, 0, 0, 0, 2, 2, -2, 2, 0, -1, 0, 4, -2, 2, -1, 0, 0, 0, 0, 2, 0, 2, 0, 2, -2, 2, 0, -2, 0, 2, -2, 2, 2, 0, 0, 2, -2, 2, 1, 2, -2, 0, -2, 2, 0, 1, 2, 2, -2, 0, 0, 0, 0, 2, -2, 4
OFFSET
0,3
COMMENTS
The g.f. of this sequence equals the numerator of George E. Andrews' expression for the cube of Ramanujan's continued fraction. See references given in A007325.
FORMULA
G.f.: Product_{n>=0} (1 - x^(n+1)) * (1 - x^(5*n+5)) / ( (1 - x^(5*n+2))^3 * (1 - x^(5*n+3))^3 ).
G.f.: Product_{n>=0} (1 - x^(5*n+5))^2 * (1 - x^(5*n+1))*(1 - x^(5*n+4)) / ( (1 - x^(5*n+2))^2*(1 - x^(5*n+3))^2 ).
G.f.: [ Sum_{n>=0} x^n/(1 - x^(5*n+3)) - x * Sum_{n>=0} x^(4*n)/(1 - x^(5*n+2)) ] * R(x), where R(q) is the expansion of Ramanujan's continued fraction (A007325).
EXAMPLE
G.f.: P(q) = 1 - q + 2*q^2 + 2*q^6 - 2*q^7 + 2*q^8 + q^9 + q^12 - 2*q^13 + 2*q^14 + 2*q^16 + 2*q^18 - 2*q^19 + 2*q^23 + 2*q^24 - 2*q^25 + 2*q^26 - q^28 + ...
Given the g.f. of this sequence,
P(q) = Sum_{n>=0} q^(2*n)/(1 - q^(5*n+2)) - q*Sum_{n>=0} q^(3*n)/(1 - q^(5*n+3))
and the g.f. of A340456,
Q(q) = Sum_{n>=0} q^n/(1 - q^(5*n+1)) - q^3*Sum_{n>=0} q^(4*n)/(1 - q^(5*n+4))
then
R(q)^3 = P(q)/Q(q) where
Q(q) = 1 + 2*q + 2*q^2 + q^3 + 2*q^4 + 2*q^5 + 2*q^6 + q^7 + 2*q^8 + 2*q^9 + 2*q^10 + 2*q^12 + 4*q^13 + 2*q^14 + q^16 + ...
R(q)^3 = 1 - 3*q + 6*q^2 - 7*q^3 + 3*q^4 + 6*q^5 - 17*q^6 + 24*q^7 - 21*q^8 + 6*q^9 + 21*q^10 - 54*q^11 + 77*q^12 - 72*q^13 + 24*q^14 + 64*q^15 + ...;
here, R(q) is the expansion of Ramanujan's continued fraction (A007325).
PROG
(PARI) {a(n) = my(A = prod(m=0, n\5+1, (1-x^(5*m+5) +x*O(x^n))^2 * (1-x^(5*m+1))*(1-x^(5*m+4)) / ( (1-x^(5*m+2))^2*(1-x^(5*m+3))^2 +x*O(x^n) ) )); polcoeff(A, n)}
for(n=0, 100, print1(a(n), ", "))
(PARI) {S(j, k, n) = sum(m=0, n, x^(j*m)/(1 - x^(5*m+k) +x*O(x^n)) ) }
{a(n) = polcoeff( S(2, 2, n) - x*S(3, 3, n), n)}
for(n=0, 100, print1(a(n), ", "))
CROSSREFS
KEYWORD
sign
AUTHOR
Paul D. Hanna, Jan 20 2021
STATUS
approved