login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A340454
G.f.: Product_{n>=0} (1 - x^(5*n+5))^2 / ( (1 - x^(5*n+2))*(1 - x^(5*n+3)) ).
6
1, 0, 1, 1, 1, -1, 2, 0, 1, 1, 1, 0, 1, -1, 1, 2, 1, 0, 2, -1, 1, 0, 1, 0, 2, 0, 0, 2, 2, -1, 1, 0, 1, 0, 1, 0, 2, -1, 1, 2, 0, 1, 2, 0, 1, 0, 1, -2, 1, 0, 2, 2, 1, -1, 2, 0, 1, 1, 1, 0, 2, -2, 1, 2, 0, 0, 1, 1, 0, 0, 1, 0, 3, 1, 1, 0, 1, -1, 2, 0, 2
OFFSET
0,7
FORMULA
G.f.: Sum_{n>=0} x^(1*n)/(1 - x^(5*n+3)) - x * Sum_{n>=0} x^(2*n)/(1 - x^(5*n+4)).
G.f.: Sum_{n>=0} x^(3*n)/(1 - x^(5*n+1)) - x * Sum_{n>=0} x^(4*n)/(1 - x^(5*n+2)).
G.f.: Sum_{n>=0} x^(1*n)/(1 - x^(5*n+3)) - x * Sum_{n>=0} x^(4*n)/(1 - x^(5*n+2)).
G.f.: Sum_{n>=0} x^(3*n)/(1 - x^(5*n+1)) - x * Sum_{n>=0} x^(2*n)/(1 - x^(5*n+4)).
G.f.: [ Sum_{n>=0} x^(2*n)/(1 - x^(5*n+2)) - x * Sum_{n>=0} x^(3*n)/(1 - x^(5*n+3)) ] / R(x), where R(q) is the expansion of Ramanujan's continued fraction (A007325).
EXAMPLE
G.f.: Q(q) = 1 + q^2 + q^3 + q^4 - q^5 + 2*q^6 + q^8 + q^9 + q^10 + q^12 - q^13 + q^14 + 2*q^15 + q^16 + 2*q^18 - q^19 + q^20 + ...
Given the g.f. of this sequence,
Q(q) = Product_{n>=0} (1 - q^(5*n+5))^2 / ( (1 - q^(5*n+2))*(1 - q^(5*n+3)) ),
and the g.f. of A340453,
P(q) = Product_{n>=0} (1 - q^(5*n+5))^2 / ( (1 - q^(5*n+1))*(1 - q^(5*n+4)) ),
then R(q) = P(q)/Q(q) where
P(q) = 1 + q + q^2 + q^3 + 2*q^4 + q^6 + q^7 + 2*q^8 + q^9 + q^10 + 2*q^12 + q^13 + 2*q^15 + 2*q^16 + q^18 + q^19 + 2*q^20 + ...
and
R(q) = 1 + q - q^3 + q^5 + q^6 - q^7 - 2*q^8 + 2*q^10 + 2*q^11 - q^12 - 3*q^13 - q^14 + 3*q^15 + 3*q^16 - 2*q^17 - 5*q^18 - q^19 + 6*q^20 + ...;
here, R(q) is the expansion of Ramanujan's continued fraction (A007325).
PROG
(PARI) {a(n) = my(A = prod(m=0, n, (1 - x^(5*m+5))^2 / ( (1 - x^(5*m+2))*(1 - x^(5*m+3)) +x*O(x^n) ) )); polcoeff(A, n)}
for(n=0, 80, print1(a(n), ", "))
(PARI) {a(n) = my(A = sum(m=0, n, x^(1*m)/(1 - x^(5*m+3) +x*O(x^n)) ) - x * sum(m=0, n, x^(2*m)/(1 - x^(5*m+4) +x*O(x^n)) )); polcoeff(A, n)}
for(n=0, 80, print1(a(n), ", "))
(PARI) {a(n) = my(A = sum(m=0, n, x^(3*m)/(1 - x^(5*m+1) +x*O(x^n)) ) - x * sum(m=0, n, x^(4*m)/(1 - x^(5*m+2) +x*O(x^n)) )); polcoeff(A, n)}
for(n=0, 80, print1(a(n), ", "))
CROSSREFS
KEYWORD
sign
AUTHOR
Paul D. Hanna, Jan 16 2021
STATUS
approved