login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A007325 G.f.: Product_{k>0} (1-x^(5k-1))*(1-x^(5k-4))/((1-x^(5k-2))*(1-x^(5k-3))).
(Formerly M0415)
55
1, -1, 1, 0, -1, 1, -1, 1, 0, -1, 2, -3, 2, 0, -2, 4, -4, 3, -1, -3, 6, -7, 5, 0, -5, 9, -10, 7, -1, -7, 14, -16, 11, -1, -11, 20, -22, 16, -2, -15, 29, -33, 23, -2, -23, 41, -45, 32, -4, -30, 57, -64, 45, -4, -43, 78, -86, 60, -7, -57, 107, -119, 83, -8, -79, 143 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,11
COMMENTS
Expansion of f(-x, -x^4) / f(-x^2, -x^3) in powers of x where f(,) is Ramanujan's two-variable theta function.
Hauptmodul series for Gamma(5).
Expansion of Rogers-Ramanujan's continued fraction 1 / (1 + x / ( 1 + x^2 / ( 1 + x^3 / ( 1 + x^4 / ... )))).
Given the g.f. A(x) the notation R(q) := q^(1/5) * A(q) is used by Berndt.
REFERENCES
G. E. Andrews and B. C. Berndt, Ramanujan's Lost Notebook, Part I, Springer, 2005, see p. 57.
B. C. Berndt, Ramanujan's Notebooks Part V, Springer-Verlag, see p. 9.
J. M. Borwein and P. B. Borwein, Pi and the AGM, Wiley, 1987, p. 81.
A. Erdelyi, Higher Transcendental Functions, McGraw-Hill, 1955, Vol. 3, p. 24.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Seiichi Manyama, Table of n, a(n) for n = 0..10000 (terms 0..1000 from T. D. Noe)
G. E. Andrews, Simplicity and surprise in Ramanujan's "Lost" Notebook, Amer. Math. Monthly, 104 (No. 10, Dec. 1997), 918-925.
W. Duke, Continued fractions and modular functions, Bull. Amer. Math. Soc. 42 (2005), 137-162; see Eq. (6.4).
J. Malenfant, Generalizing Ramanujan's J Functions, arXiv preprint arXiv:1109.5957 [math.NT], 2011.
P. J. Nahin, Number-Crunching, Princeton University Press, 2011. See p. 22 equation (2.2.4).
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
Eric Weisstein's World of Mathematics, Rogers-Ramanujan Continued Fraction.
FORMULA
Euler transform of period 5 sequence [-1, 1, 1, -1, 0, ...] (=-A080891).
G.f.: Product_{k>=1}(1-x^(5*k-1)) * (1-x^(5*k-4)) / ( (1-x^(5*k-2)) * (1-x^(5*k-3)) ) = H(x) / G(x) where H and G are respectively the g.f. of A003114 and A003106.
G.f.: (Sum (-1)^k x^((5*k + 3)*k/2))/(Sum (-1)^k x^((5*k + 1)*k/2)). - Michael Somos, Dec 13 2002
Given g.f. A(x), then B(q) = q * A(q^5) satisfies 0 = f(B(q), B(q^2)) where f(u, v) = u^2 - v + u*v^3 + u^3*v^2. - Michael Somos, Mar 09 2004
Given g.f. A(x), then B(q) = q * A(q^5) satisfies 0 = f(B(q), B(q^2), B(q^4)) where f(u, v, w) = u * (u*v + w^2 + v^2*w) - w. - Michael Somos, Aug 29 2005
Given g.f. A(x), then B(q) = q * A(q^5) satisfies 0 = f(B(q), B(q^2), B(q^3), B(q^6)) where f(u1, u2, u3, u6) = u1*u2 + u1*u3^2*u6 + u2*u3^2 - u2^2*u3*u6 - u3. - Michael Somos, Aug 29 2005
G.f.: 1 / (1 + x / ( 1 + x^2 / ( 1 + x^3 / ( 1 + x^4 / ... )))).
G.f.: 1 / (1 + 1 / (x^-1 + 1 / (x^-1 + 1 / (x^-2 + 1 / (x^-2 + 1 / ... ))))). - Michael Somos, Apr 30 2012
G.f.: A(x) = S(0) -1; S(k) = 1 + x^k/S(k+1); (continued fraction). - Sergei N. Gladkovskii, Dec 18 2011
Hankel transform is A167683. - Michael Somos, Apr 30 2012
a(n) = (-1)^n * A226556(n). - Michael Somos, Jun 11 2013
a(0) = 1, a(n) = -(1/n)*Sum_{k=1..n} A109091(k)*a(n-k) for n > 0. - Seiichi Manyama, Apr 01 2017
EXAMPLE
G.f. = 1 - x + x^2 - x^4 + x^5 - x^6 + x^7 - x^9 + 2*x^10 - 3*x^11 + 2*x^12 - ...
G.f. = q - q^6 + q^11 - q^21 + q^26 - q^31 + q^36 - q^46 + 2*q^51 - 3*q^56 + ...
MAPLE
t1:=mul((1-x^(5*k-1))*(1-x^(5*k-4))/((1-x^(5*k-2))*(1-x^(5*k-3))), k=1..60); seriestolist(series(t1, x, 59)); # N. J. A. Sloane, Jun 10 2013
A007325_G:=proc(x, NK); Digits:=250;
Q2:=1;
for k from NK by -1 to 0 do
Q1:=1+x^k/Q2; Q2:=Q1; od;
Q3:=Q2; S:=Q3-1;
end;
# Sergei N. Gladkovskii, Dec 18 2011
MATHEMATICA
a[ n_] := SeriesCoefficient[ QPochhammer[ q, q^5] QPochhammer[ q^4, q^5] / (QPochhammer[ q^2, q^5] QPochhammer[ q^3, q^5]), {q, 0, n}]; (* Michael Somos, Aug 17 2011 *)
a[ n_] := SeriesCoefficient[ ContinuedFractionK[ q^k, 1, {k, 0, n}], {q, 0, n}]; (* Michael Somos, Jun 10 2013 *)
max = 65; CoefficientList[ Series[ Fold[ #2/(1 + #1)&, q^n, q^Reverse[ Range[0, max-1] ] ], {q, 0, max}], q] (* Jean-François Alcover, Apr 04 2013 *)
PROG
(PARI) {a(n) = my(k); if( n<0, 0, k = (3 + sqrtint(9 + 40*n)) \ 10; polcoeff( sum( n=-k, k, (-1)^n * x^((5*n^2 + 3*n)/2), x * O(x^n)) / sum( n=-k, k, ( -1)^n * x^((5*n^2 + n)/2), x * O(x^n)), n))};
(PARI) {a(n) = if( n<0, 0, polcoeff( prod( k=1, n, if(k%5, (1 - x^k)^((-1)^binomial( k%5, 2)), 1), 1 + x * O(x^n)), n))};
(PARI) {a(n) = my(cf); if( n<0, 0, cf = contfracpnqn( matrix( 2, (sqrtint(8*n + 1) + 1)\2, i, j, if( i==1, x^(j-1), 1))); polcoeff( cf[2, 1] / cf[1, 1] + x * O(x^n), n))};
(PARI) {a(n) = my(A, m); if( n<0, 0, m=1; A = 1 + O(x); while( m<=n, m*=5; A = x * subst(A, x, x^5); A = (A * (1 - 2*A + 4*A^2 - 3*A^3 + A^4) / (1 + 3*A + 4*A^2 + 2*A^3 + A^4) / x)^(1/5)); polcoeff(A, n))};
CROSSREFS
Sequence in context: A021435 A334358 A226556 * A247920 A269735 A187038
KEYWORD
sign,easy,nice
AUTHOR
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 2 11:40 EDT 2024. Contains 375613 sequences. (Running on oeis4.)