login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A269735
G.f.: Sum_{k >= 0} x^(2^k)*(1-x^(2^k))/(1+x^(2^k)).
4
0, 1, -1, 2, -3, 2, 0, 2, -5, 2, 0, 2, -2, 2, 0, 2, -7, 2, 0, 2, -2, 2, 0, 2, -4, 2, 0, 2, -2, 2, 0, 2, -9, 2, 0, 2, -2, 2, 0, 2, -4, 2, 0, 2, -2, 2, 0, 2, -6, 2, 0, 2, -2, 2, 0, 2, -4, 2, 0, 2, -2, 2, 0, 2, -11, 2, 0, 2, -2, 2, 0, 2, -4, 2, 0, 2, -2, 2, 0, 2, -6, 2, 0, 2, -2, 2, 0, 2, -4, 2, 0, 2, -2
OFFSET
0,4
COMMENTS
Second differences of A268289.
LINKS
MAPLE
t7:=add(x^(2^k)*(1-x^(2^k))/(1+x^(2^k)), k=0..12);
t8:=series(t7, x, 256);
# second Maple program:
b:= proc(n) option remember; `if`(n<0, 0,
add(2*i-1, i=Bits[Split](n)))
end:
a:= n-> b(n)-b(n-1):
seq(a(n), n=0..92); # Alois P. Heinz, Jan 18 2022
MATHEMATICA
Join[{0, 0}, Table[DigitCount[n, 2, 1] - DigitCount[n, 2, 0], {n, 1, 100}]] // Differences (* Jean-François Alcover, Jun 27 2022 *)
PROG
(PARI)
up_to = 1024;
A268289list(up_to) = { my(v=vector(up_to), s = 1); v[1] = s; for(n=2, up_to, s += (2*hammingweight(n) - #binary(n)); v[n] = s); (v); };
v268289 = A268289list(up_to+1);
A268289(n) = if(!n, n, v268289[n]);
almost_firstdiffs_of_A268289(n) = if(!n, 1, v268289[n+1]-v268289[n]);
A269735(n) = if(n<=1, n, almost_firstdiffs_of_A268289(n-1)-almost_firstdiffs_of_A268289(n-2)); \\ Antti Karttunen, Sep 30 2018
(PARI)
up_to_k = 16;
up_to = 1+(2^up_to_k);
x='x+O('x^(up_to+1));
v269735 = Vec(sum(k=0, up_to_k, x^(2^k)*(1-x^(2^k))/(1+x^(2^k))));
A269735(n) = if(!n, n, v269735[n]); \\ Antti Karttunen, Oct 01 2018
CROSSREFS
Sequence in context: A226556 A007325 A247920 * A187038 A332260 A056619
KEYWORD
sign
AUTHOR
N. J. A. Sloane, Mar 11 2016
STATUS
approved