login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A186577
G.f. satisfies: A(x) = Sum_{n>=0} x^n*A(x)^[n*phi^2] where phi = (1+sqrt(5))/2.
2
1, 1, 3, 13, 65, 353, 2025, 12074, 74083, 464708, 2966647, 19211268, 125890754, 833242554, 5562338802, 37406660537, 253185542824, 1723428340232, 11790556480270, 81026845851661, 559086953351167, 3871831119088196
OFFSET
0,3
FORMULA
G.f. satisfies: A(x) = F(x*A(x)) where A(x/F(x)) = F(x) is the g.f. of A186576, which in turn satisfies: F(x) = Sum_{n>=0} x^n*F(x)^[n*phi].
G.f.: A(x) = (1/x)*Series_Reversion(x/F(x)) where F(x) is the g.f. of A186576.
EXAMPLE
G.f.: A(x) = 1 + x + 3*x^2 + 13*x^3 + 65*x^4 + 353*x^5 + 2025*x^6 +...
The g.f. satisfies:
A(x) = 1 + x*A(x)^2 + x^2*A(x)^5 + x^3*A(x)^7 + x^4*A(x)^10 + x^5*A(x)^13 + x^6*A(x)^15 + x^7*A(x)^18 +...+ x^n*A(x)^A001950(n) +...
The g.f. of A186576, F(x) = A(x/F(x)), satisfies:
F(x) = 1 + x*F(x) + x^2*F(x)^3 + x^3*F(x)^4 + x^4*F(x)^6 + x^5*F(x)^8 + x^6*F(x)^9 + x^7*F(x)^11 +...+ x^n*F(x)^A000201(n) +...
and begins:
F(x) = 1 + x + 2*x^2 + 6*x^3 + 20*x^4 + 72*x^5 + 274*x^6 +...
Since A(x) = F(x*A(x)), then:
A(x) = 1 + x*A(x) + 2*x^2*A(x)^2 + 6*x^3*A(x)^3 + 20*x^4*A(x)^4 +...
PROG
(PARI) {a(n)=local(A=1+x, phi=(1+sqrt(5))/2); for(i=1, n, A=sum(m=0, n, x^m*(A+x*O(x^n))^floor(m*phi^2))); polcoeff(A, n)}
CROSSREFS
Cf. A186576, A001950 (upper Wythoff sequence).
Sequence in context: A256332 A284715 A364473 * A141342 A232222 A241598
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Feb 24 2011
STATUS
approved