login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

G.f. satisfies A(x) = A(x^2)/M(x), where M(x) = Sum_{n>=1} mu(n)*x^n and mu(n) = A008683(n), the Moebius function of n.
0

%I #12 Nov 30 2024 10:28:11

%S 1,1,3,4,11,15,33,50,104,161,309,500,929,1529,2757,4620,8207,13874,

%T 24353,41478,72327,123687,214685,368232,637430,1095201,1892492,

%U 3255372,5619323,9672701,16685587,28734098,49547095,85347087,147130261,253480414,436911525,752798677,1297444411,2235633198

%N G.f. satisfies A(x) = A(x^2)/M(x), where M(x) = Sum_{n>=1} mu(n)*x^n and mu(n) = A008683(n), the Moebius function of n.

%H Paul D. Hanna, <a href="/A378260/b378260.txt">Table of n, a(n) for n = 1..3000</a>

%F G.f. A(x) = Sum_{n>=1} a(n)*x^n satisfies the following formulas.

%F (1) A(x) = A(x^2)/M(x), where M(x) = Sum_{n>=1} mu(n)*x^n.

%F (2) x = Sum_{n>=1} A(x^(2*n)) / A(x^n).

%F a(n) ~ c * d^n, where d = 1.723262561763844024160437963573163520188527015264827413326383054228438457576... and c = 0.7859046910881843332272010625259660209978142303560254864659049088867251443... - _Vaclav Kotesovec_, Nov 30 2024

%e G.f. A(x) = x + x^2 + 3*x^3 + 4*x^4 + 11*x^5 + 15*x^6 + 33*x^7 + 50*x^8 + 104*x^9 + 161*x^10 + 309*x^11 + 500*x^12 + 929*x^13 + 1529*x^14 + 2757*x^15 + 4620*x^16 + ...

%e where A(x) = A(x^2)/M(x) with

%e M(x) = x - x^2 - x^3 - x^5 + x^6 - x^7 + x^10 - x^11 - x^13 + x^14 + x^15 - x^17 - x^19 + x^21 + x^22 - x^23 + x^26 - x^29 - x^30 + ... + mu(n)*x^n + ...

%e so that x = M(x) + M(x^2) + M(x^3) + M(x^4) + ... + M(x^n) + ...

%e Thus, because M(x) = A(x^2)/A(x), we have

%e x = A(x^2)/A(x) + A(x^4)/A(x^2) + A(x^6)/A(x^3) + A(x^8)/A(x^4) + A(x^10)/A(x^5) + A(x^12)/A(x^6) + ... + A(x^(2*n))/A(x^n) + ...

%e SPECIFIC VALUES.

%e A(t) = 1000 at t = 0.57983979082390078033201288097053684588681918658...

%e A(t) = 100 at t = 0.575850800621842491687274688724496083876096493693...

%e A(t) = 10 at t = 0.5429296775693301210019293351373468274776922745760...

%e A(t) = 9 at t = 0.53946231343810887800940222774498269502147986174360...

%e A(t) = 8 at t = 0.53525852440539581430297764508815311813586247192451...

%e A(t) = 7 at t = 0.53004645173922704662750351997680689150327151199058...

%e A(t) = 6 at t = 0.52339661111093477495939037490084005628700411644551...

%e A(t) = 5 at t = 0.51458419720941955692565375903201066787604036604586...

%e A(t) = 4 at t = 0.50227142127888616541434068019839636042944372636880...

%e A(t) = 3 at t = 0.48364898724179834772275350279540495722010623952244...

%e A(t) = 2 at t = 0.45148154417138074188660255689175385165406842883889...

%e A(t) = 1 at t = 0.37847838037693933849966786108068785599206753365459...

%e A(1/2) = 3.85113240762543882840278502418639089248043784485031...

%e where A(1/2) = A(1/4)/M(1/2)

%e with M(1/2) = 0.10201133481781036474303639393182435154361049251029...

%e A(1/3) = 0.70553754549458547877689262864744328280095059724850...

%e where A(1/3) = A(1/9)/M(1/3)

%e with M(1/3) = 0.18199538670263388782780010030056557322634498013538...

%e A(1/4) = 0.39285915746199878617465323026428187937371048080708...

%e where A(1/4) = A(1/16)/M(1/4)

%e with M(1/4) = 0.17108224791836356794497287128799432329181231331328...

%e A(1/5) = 0.27550965922396685715103103981428480321441405929553...

%e where A(1/5) = A(1/25)/M(1/5)

%e with M(1/5) = 0.15173128129604728456076208173747135942418710339130...

%e A(1/6) = 0.13414853338170816574291660065981488877610508998414...

%e A(1/9) = 0.12840457842551423371933936516424287719901492174905...

%e A(1/16) = 0.06721122777391310699668932733909384687045264984777...

%e A(1/25) = 0.04180343360348984362058625595257513524070610827394...

%o (PARI) {a(n) = my(A=x, M = sum(m=1,n,moebius(m)*x^m) +x*O(x^n));

%o for(i=1,#binary(n), A = subst(A,x,x^2)/M ); polcoef(A,n)}

%o for(n=1,40, print1(a(n),", "))

%Y Cf. A073776, A008683.

%K nonn,new

%O 1,3

%A _Paul D. Hanna_, Nov 25 2024