login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A378265
Terms k of A358657 such that lpf(k-1) and lpf(k+1) are twin primes pair, where lpf(k) = A020639(k) is the least prime dividing k.
1
216, 1591596, 2046456, 2051496, 3108204, 8933184, 10496844, 10630836, 13579236, 20866644, 26666856, 27288036, 30398544, 30538404, 33949656, 34851384, 35722044, 36657180, 38588544, 48634956, 67747896, 81982116, 82130796, 87172884, 87865056, 98639100, 100473444
OFFSET
1,1
COMMENTS
Iannucci (2004-2005) called the three numbers before each term and the three numbers after each term (i.e., {k-3, k-2, k-1} and {k+1, k+2, k+3}) "almost prime twin prime triplet twins" (APTPTTs for short), and found that there are 126 terms below 10^9.
LINKS
Douglas E. Iannucci, Almost prime twin prime triplet twins, Journal of Recreational Mathematics, Vol. 33, No. 2 (2004-2005), pp. 125-129.
FORMULA
a(n) == 0 (mod 36). - Hugo Pfoertner, Nov 21 2024
PROG
(PARI) lista(lim) = {my(p = 2, f1, f2); forprime(q = 3, lim/2, if(q == p+2 && factor(2*p-1)[, 2] == [1, 1]~ && factor(2*q+1)[, 2] == [1, 1]~, f1 = factor(2*p+1); f2 = factor(2*q-1); if(f1[, 2] == [1, 1]~ && f2[, 2] == [1, 1]~ && abs(f1[1, 1] - f2[1, 1]) == 2, print1(2*p+2, ", "))); p = q); }
CROSSREFS
KEYWORD
nonn
AUTHOR
Amiram Eldar, Nov 21 2024
STATUS
approved