OFFSET
0,5
COMMENTS
The number of submultisets of a partition is the product of its multiplicities, each plus one.
The Heinz numbers of these partitions are given by A325797.
LINKS
Alois P. Heinz, Table of n, a(n) for n = 0..500
FORMULA
EXAMPLE
The a(3) = 1 through a(9) = 14 partitions:
(3) (4) (5) (6) (7) (8) (9)
(22) (32) (33) (43) (44) (54)
(41) (42) (52) (53) (63)
(51) (61) (62) (72)
(222) (322) (71) (81)
(331) (332) (333)
(511) (422) (432)
(611) (441)
(2222) (522)
(531)
(621)
(711)
(3222)
(6111)
MAPLE
b:= proc(n, i, p) option remember; `if`(n=0 or i=1,
`if`(n=p-1, 1, 0), add(`if`(irem(p, j+1, 'r')=0,
(w-> b(w, min(w, i-1), r))(n-i*j), 0), j=0..n/i))
end:
a:= n-> add(b(n$2, k), k=0..n-1):
seq(a(n), n=0..55); # Alois P. Heinz, Aug 17 2019
MATHEMATICA
Table[Length[Select[IntegerPartitions[n], Times@@(1+Length/@Split[#])<n&]], {n, 0, 30}]
(* Second program: *)
b[n_, i_, p_] := b[n, i, p] = If[n == 0 || i == 1,
If[n == p - 1, 1, 0], Sum[If[Mod[p, j + 1] == 0, r = p/(j + 1);
Function[w, b[w, Min[w, i - 1], r]][n - i*j], 0], {j, 0, n/i}]];
a[n_] := Sum[b[n, n, k], {k, 0, n - 1}];
a /@ Range[0, 55] (* Jean-François Alcover, May 12 2021, after Alois P. Heinz *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Gus Wiseman, May 29 2019
STATUS
approved