OFFSET
0,7
COMMENTS
We define a semi-sum of a multiset to be any sum of a 2-element submultiset. This is different from sums of pairs of elements. For example, 2 is the sum of a pair of elements of {1}, but there are no semi-sums.
EXAMPLE
For the partition y = (3,3,2,1) we have 4 = 3 + 1, so y is counted under a(9).
The a(2) = 1 through a(10) = 14 partitions:
(11) . (211) (221) (321) (421) (521) (621) (721)
(2211) (2221) (2222) (3222) (3322)
(3111) (3211) (3221) (3321) (3331)
(3311) (4221) (4222)
(32111) (4311) (4321)
(41111) (32211) (5221)
(42111) (5311)
(32221)
(33211)
(42211)
(43111)
(331111)
(421111)
(511111)
MATHEMATICA
Table[Length[Select[IntegerPartitions[n], MemberQ[Total/@Subsets[#, {2}], Length[#]]&]], {n, 0, 10}]
CROSSREFS
The following sequences count and rank integer partitions and finite sets according to whether their length is a subset-sum, linear combination, or semi-sum of the parts. The current sequence is starred.
sum-full sum-free comb-full comb-free semi-full semi-free
-----------------------------------------------------------
Triangles:
KEYWORD
nonn
AUTHOR
Gus Wiseman, Nov 19 2023
STATUS
approved