OFFSET
1,2
COMMENTS
EXAMPLE
60 has semiprime divisor 10 with prime indices {1,3} summing to 4 = bigomega(60), so 60 is not in the sequence.
The terms together with their prime indices begin:
1: {}
2: {1}
3: {2}
5: {3}
6: {1,2}
7: {4}
8: {1,1,1}
9: {2,2}
10: {1,3}
11: {5}
13: {6}
14: {1,4}
15: {2,3}
16: {1,1,1,1}
17: {7}
19: {8}
20: {1,1,3}
MATHEMATICA
prix[n_]:=If[n==1, {}, Flatten[Cases[FactorInteger[n], {p_, k_}:>Table[PrimePi[p], {k}]]]];
Select[Range[100], FreeQ[Total/@Subsets[prix[#], {2}], PrimeOmega[#]]&]
CROSSREFS
The following sequences count and rank integer partitions and finite sets according to whether their length is a subset-sum, linear combination, or semi-sum of the parts. The current sequence is starred.
sum-full sum-free comb-full comb-free semi-full semi-free
-----------------------------------------------------------
Triangles:
A365541 counts subsets with a semi-sum k.
KEYWORD
nonn
AUTHOR
Gus Wiseman, Nov 21 2023
STATUS
approved