OFFSET
0,8
COMMENTS
The non-strict version is A367219.
EXAMPLE
The a(2) = 1 through a(16) = 10 strict partitions (A..G = 10..16):
2 3 4 5 6 7 8 9 A B C D E F G
43 53 54 64 65 75 76 86 87 97
63 73 74 84 85 95 96 A6
83 93 94 A4 A5 B5
542 642 A3 B3 B4 C4
652 752 C3 D3
742 842 654 754
762 862
852 952
942 A42
MATHEMATICA
combs[n_, y_]:=With[{s=Table[{k, i}, {k, y}, {i, 0, Floor[n/k]}]}, Select[Tuples[s], Total[Times@@@#]==n&]];
Table[Length[Select[IntegerPartitions[n], UnsameQ@@#&&combs[Length[#], Union[#]]=={}&]], {n, 0, 30}]
CROSSREFS
The following sequences count and rank integer partitions and finite sets according to whether their length is a subset-sum or linear combination of the parts. The current sequence is starred.
sum-full sum-free comb-full comb-free
-------------------------------------------
Triangles:
A365541 counts subsets containing two distinct elements summing to k.
KEYWORD
nonn
AUTHOR
Gus Wiseman, Nov 14 2023
STATUS
approved