Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #7 Nov 15 2023 08:23:04
%S 0,0,1,1,1,1,1,2,2,3,3,5,5,7,7,10,10,13,14,17,18,23,24,29,32,37,41,49,
%T 54,63,72,82,93,108,122,139,159,180,204,231,261,293,331,370,415,464,
%U 518,575,641,710,789,871,965,1064,1177,1294,1428,1569,1729,1897
%N Number of strict integer partitions of n whose length (number of parts) cannot be written as a nonnegative linear combination of the parts.
%C The non-strict version is A367219.
%e The a(2) = 1 through a(16) = 10 strict partitions (A..G = 10..16):
%e 2 3 4 5 6 7 8 9 A B C D E F G
%e 43 53 54 64 65 75 76 86 87 97
%e 63 73 74 84 85 95 96 A6
%e 83 93 94 A4 A5 B5
%e 542 642 A3 B3 B4 C4
%e 652 752 C3 D3
%e 742 842 654 754
%e 762 862
%e 852 952
%e 942 A42
%t combs[n_,y_]:=With[{s=Table[{k,i},{k,y}, {i,0,Floor[n/k]}]}, Select[Tuples[s], Total[Times@@@#]==n&]];
%t Table[Length[Select[IntegerPartitions[n], UnsameQ@@#&&combs[Length[#], Union[#]]=={}&]], {n,0,30}]
%Y The following sequences count and rank integer partitions and finite sets according to whether their length is a subset-sum or linear combination of the parts. The current sequence is starred.
%Y sum-full sum-free comb-full comb-free
%Y -------------------------------------------
%Y partitions: A367212 A367213 A367218 A367219
%Y strict: A367214 A367215 A367220 A367221*
%Y subsets: A367216 A367217 A367222 A367223
%Y ranks: A367224 A367225 A367226 A367227
%Y A000041 counts integer partitions, strict A000009.
%Y A002865 counts partitions whose length is a part, complement A229816.
%Y A124506 appears to count combination-free subsets, differences of A326083.
%Y A188431 counts complete strict partitions, incomplete A365831.
%Y A240855 counts strict partitions whose length is a part, complement A240861.
%Y A364272 counts sum-full strict partitions, sum-free A364349.
%Y Triangles:
%Y A008284 counts partitions by length, strict A008289.
%Y A046663 counts partitions of n without a subset-sum k, strict A365663.
%Y A365541 counts subsets containing two distinct elements summing to k.
%Y A365658 counts partitions by number of subset-sums, strict A365832.
%Y Cf. A088314, A103580, A116861, A364346, A364350, A364533, A365312, A365380.
%K nonn
%O 0,8
%A _Gus Wiseman_, Nov 14 2023