OFFSET
2,5
COMMENTS
Warning: Do not confuse with the non-strict version A046663.
Rows are palindromes.
LINKS
P. Erdős, J. L. Nicolas and A. Sárközy, On the number of partitions of n without a given subsum (I), Discrete Math., 75 (1989), 155-166 = Annals Discrete Math. Vol. 43, Graph Theory and Combinatorics 1988, ed. B. Bollobas.
EXAMPLE
Triangle begins:
1
1 1
1 2 1
2 2 2 2
2 2 3 2 2
3 3 3 3 3 3
3 4 3 5 3 4 3
5 5 4 5 5 4 5 5
5 6 5 6 7 6 5 6 5
7 7 7 7 7 7 7 7 7 7
8 9 8 8 8 11 8 8 8 9 8
Row n = 8 counts the following strict partitions:
(8) (8) (8) (8) (8) (8) (8)
(6,2) (7,1) (7,1) (7,1) (7,1) (7,1) (6,2)
(5,3) (5,3) (6,2) (6,2) (6,2) (5,3) (5,3)
(4,3,1) (5,3) (4,3,1)
(5,2,1)
MATHEMATICA
Table[Length[Select[IntegerPartitions[n], UnsameQ@@#&&FreeQ[Total/@Subsets[#], k]&]], {n, 2, 15}, {k, 1, n-1}]
CROSSREFS
Columns k = 0 and k = n are A025147.
Central column n = 2k is A321142.
The complement for subsets instead of strict partitions is A365381.
Row sums are A365922.
A000009 counts subsets summing to n.
A000124 counts distinct possible sums of subsets of {1..n}.
KEYWORD
nonn,tabl
AUTHOR
Gus Wiseman, Sep 17 2023
STATUS
approved