login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A108796
Number of unordered pairs of partitions of n (into distinct parts) with empty intersection.
11
1, 0, 0, 1, 1, 3, 4, 7, 9, 16, 21, 33, 46, 68, 95, 140, 187, 266, 372, 507, 683, 948, 1256, 1692, 2263, 3003, 3955, 5248, 6824, 8921, 11669, 15058, 19413, 25128, 32149, 41129, 52578, 66740, 84696, 107389, 135310, 170277, 214386, 268151, 335261, 418896, 521204
OFFSET
0,6
COMMENTS
Counted as orderless pairs since intersection is commutative.
LINKS
Vaclav Kotesovec Table of n, a(n) for n = 0..1050 (terms 0..700 from Alois P. Heinz)
FORMULA
a(n) = ceiling(1/2 * [(x*y)^n] Product_{j>0} (1+x^j+y^j)). - Alois P. Heinz, Mar 31 2017
a(n) = ceiling(A365662(n)/2). - Gus Wiseman, Oct 07 2023
EXAMPLE
Of the partitions of 12 into different parts, the partition (5+4+2+1) has an empty intersection with only (12) and (9+3).
From Gus Wiseman, Oct 07 2023: (Start)
The a(6) = 4 pairs are:
((6),(5,1))
((6),(4,2))
((6),(3,2,1))
((5,1),(4,2))
(End)
MATHEMATICA
using DiscreteMath`Combinatorica`and ListPartitionsQ[n_Integer]:= Flatten[ Reverse /@ Table[(Range[m-1, 0, -1]+#1&)/@ TransposePartition/@ Complement[Partitions[ n-m* (m-1)/2, m], Partitions[n-m*(m-1)/2, m-1]], {m, -1+Floor[1/2*(1+Sqrt[1+8*n])]}], 1]; Table[Plus@@Flatten[Outer[If[Intersection[Flatten[ #1], Flatten[ #2]]==={}, 1, 0]&, ListPartitionsQ[k], ListPartitionsQ[k], 1]], {k, 48}]/2
nmax = 50; p = 1; Do[p = Expand[p*(1 + x^j + y^j)]; p = Select[p, (Exponent[#, x] <= nmax) && (Exponent[#, y] <= nmax) &], {j, 1, nmax}]; p = Select[p, Exponent[#, x] == Exponent[#, y] &]; Table[Coefficient[p, x^n*y^n]/2, {n, 1, nmax}] (* Vaclav Kotesovec, Apr 07 2017 *)
Table[Length[Select[Subsets[Select[IntegerPartitions[n], UnsameQ@@#&], {2}], Intersection@@#=={}&]], {n, 15}] (* Gus Wiseman, Oct 07 2023 *)
PROG
(PARI) a(n) = {my(A=1 + O(x*x^n) + O(y*y^n)); polcoef(polcoef(prod(k=1, n, A + x^k + y^k), n), n)/2} \\ Andrew Howroyd, Oct 10 2023
CROSSREFS
Column k=2 of A258280.
Main diagonal of A284593 times (1/2).
This is the strict case of A260669.
The ordered version is A365662 = strict case of A054440.
This is the disjoint case of A366132, with twins A366317.
A000041 counts integer partitions, strict A000009.
A002219 counts biquanimous partitions, strict A237258, ordered A064914.
Sequence in context: A281734 A086336 A237258 * A364684 A048849 A076211
KEYWORD
nonn
AUTHOR
Wouter Meeussen, Jul 09 2005
EXTENSIONS
Name edited by Gus Wiseman, Oct 10 2023
a(0)=1 prepended by Alois P. Heinz, Feb 09 2024
STATUS
approved