OFFSET
0,6
COMMENTS
Counted as orderless pairs since intersection is commutative.
LINKS
Vaclav Kotesovec Table of n, a(n) for n = 0..1050 (terms 0..700 from Alois P. Heinz)
FORMULA
a(n) = ceiling(1/2 * [(x*y)^n] Product_{j>0} (1+x^j+y^j)). - Alois P. Heinz, Mar 31 2017
a(n) = ceiling(A365662(n)/2). - Gus Wiseman, Oct 07 2023
EXAMPLE
Of the partitions of 12 into different parts, the partition (5+4+2+1) has an empty intersection with only (12) and (9+3).
From Gus Wiseman, Oct 07 2023: (Start)
The a(6) = 4 pairs are:
((6),(5,1))
((6),(4,2))
((6),(3,2,1))
((5,1),(4,2))
(End)
MATHEMATICA
using DiscreteMath`Combinatorica`and ListPartitionsQ[n_Integer]:= Flatten[ Reverse /@ Table[(Range[m-1, 0, -1]+#1&)/@ TransposePartition/@ Complement[Partitions[ n-m* (m-1)/2, m], Partitions[n-m*(m-1)/2, m-1]], {m, -1+Floor[1/2*(1+Sqrt[1+8*n])]}], 1]; Table[Plus@@Flatten[Outer[If[Intersection[Flatten[ #1], Flatten[ #2]]==={}, 1, 0]&, ListPartitionsQ[k], ListPartitionsQ[k], 1]], {k, 48}]/2
nmax = 50; p = 1; Do[p = Expand[p*(1 + x^j + y^j)]; p = Select[p, (Exponent[#, x] <= nmax) && (Exponent[#, y] <= nmax) &], {j, 1, nmax}]; p = Select[p, Exponent[#, x] == Exponent[#, y] &]; Table[Coefficient[p, x^n*y^n]/2, {n, 1, nmax}] (* Vaclav Kotesovec, Apr 07 2017 *)
Table[Length[Select[Subsets[Select[IntegerPartitions[n], UnsameQ@@#&], {2}], Intersection@@#=={}&]], {n, 15}] (* Gus Wiseman, Oct 07 2023 *)
PROG
(PARI) a(n) = {my(A=1 + O(x*x^n) + O(y*y^n)); polcoef(polcoef(prod(k=1, n, A + x^k + y^k), n), n)/2} \\ Andrew Howroyd, Oct 10 2023
CROSSREFS
KEYWORD
nonn
AUTHOR
Wouter Meeussen, Jul 09 2005
EXTENSIONS
Name edited by Gus Wiseman, Oct 10 2023
a(0)=1 prepended by Alois P. Heinz, Feb 09 2024
STATUS
approved