login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A002219
a(n) is the number of partitions of 2n that can be obtained by adding together two (not necessarily distinct) partitions of n.
(Formerly M2574 N1018)
62
1, 3, 6, 14, 25, 53, 89, 167, 278, 480, 760, 1273, 1948, 3089, 4682, 7177, 10565, 15869, 22911, 33601, 47942, 68756, 96570, 136883, 189674, 264297, 362995, 499617, 678245, 924522, 1243098, 1676339, 2237625, 2988351, 3957525, 5247500, 6895946, 9070144, 11850304
OFFSET
1,2
REFERENCES
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Fausto A. C. Cariboni, Table of n, a(n) for n = 1..140 (terms 1..89 from Alois P. Heinz)
N. Metropolis and P. R. Stein, An elementary solution to a problem in restricted partitions, J. Combin. Theory, 9 (1970), 365-376.
FORMULA
See A213074 for Metropolis and Stein's formulas.
a(n) = A000041(2*n) - A006827(n) = A000041(2*n) - A046663(2*n,n).
a(n) = A276107(2*n). - Max Alekseyev, Oct 17 2022
EXAMPLE
Here are the seven partitions of 5: 1^5, 1^3 2, 1 2^2, 1^2 3, 2 3, 1 4, 5. Adding these together in pairs we get a(5) = 25 partitions of 10: 1^10, 1^8 2, 1^6 2^2, etc. (we get all partitions of 10 into parts of size <= 5 - there are 30 such partitions - except for five of them: we do not get 2 4^2, 3^2 4, 2^3 4, 1 3^3, 2^5). - N. J. A. Sloane, Jun 03 2012
From Gus Wiseman, Oct 27 2022: (Start)
The a(1) = 1 through a(4) = 14 partitions:
(11) (22) (33) (44)
(211) (321) (422)
(1111) (2211) (431)
(3111) (2222)
(21111) (3221)
(111111) (3311)
(4211)
(22211)
(32111)
(41111)
(221111)
(311111)
(2111111)
(11111111)
(End)
MAPLE
g:= proc(n, i) option remember;
`if`(n=0, 1, `if`(i>1, g(n, i-1), 0)+`if`(i>n, 0, g(n-i, i)))
end:
b:= proc(n, i, s) option remember;
`if`(i=1 and s<>{} or n in s, g(n, i), `if`(i<1 or s={}, 0,
b(n, i-1, s)+ `if`(i>n, 0, b(n-i, i, map(x-> {`if`(x>n-i, NULL,
max(x, n-i-x)), `if`(x<i or x>n, NULL, max(x-i, n-x))}[], s)))))
end:
a:= n-> b(2*n, n, {n}):
seq(a(n), n=1..25); # Alois P. Heinz, Jul 10 2012
MATHEMATICA
b[n_, i_, s_] := b[n, i, s] = If[MemberQ[s, 0 | n], 0, If[n == 0, 1, If[i < 1, 0, b[n, i-1, s] + If[i <= n, b[n-i, i, Select[Flatten[Transpose[{s, s-i}]], 0 <= # <= n-i &]], 0]]]]; A006827[n_] := b[2*n, 2*n, {n}]; a[n_] := PartitionsP[2*n] - A006827[n]; Table[Print[an = a[n]]; an, {n, 1, 25}] (* Jean-François Alcover, Nov 12 2013, after Alois P. Heinz *)
primeMS[n_]:=If[n==1, {}, Flatten[Cases[FactorInteger[n], {p_, k_}:>Table[PrimePi[p], {k}]]]];
subptns[s_]:=primeMS/@Divisors[Times@@Prime/@s];
Table[Length[Select[IntegerPartitions[2n], MemberQ[Total/@subptns[#], n]&]], {n, 10}] (* Gus Wiseman, Oct 27 2022 *)
PROG
(Python)
from itertools import combinations_with_replacement
from sympy.utilities.iterables import partitions
def A002219(n): return len({tuple(sorted((p+q).items())) for p, q in combinations_with_replacement(tuple(Counter(p) for p in partitions(n)), 2)}) # Chai Wah Wu, Sep 20 2023
CROSSREFS
Column m=2 of A213086.
Bisection of A276107.
The strict version is A237258, ranked by A357854.
Ranked by A357976 = positions of nonzero terms in A357879.
A122768 counts distinct submultisets of partitions.
A304792 counts subset-sums of partitions, positive A276024, strict A284640.
Sequence in context: A285460 A236429 A316245 * A006906 A324703 A120940
KEYWORD
nonn,nice
EXTENSIONS
Better description from Vladeta Jovovic, Mar 06 2000
More terms from Christian G. Bower, Oct 12 2001
Edited by N. J. A. Sloane, Jun 03 2012
More terms from Alois P. Heinz, Jul 10 2012
STATUS
approved