OFFSET
1,2
REFERENCES
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Fausto A. C. Cariboni, Table of n, a(n) for n = 1..140 (terms 1..89 from Alois P. Heinz)
N. Metropolis and P. R. Stein, An elementary solution to a problem in restricted partitions, J. Combin. Theory, 9 (1970), 365-376.
Vladimir A. Shlyk, Number of Vertices of the Polytope of Integer Partitions and Factorization of the Partitioned Number, arXiv:1805.07989 [math.CO], 2018.
FORMULA
EXAMPLE
Here are the seven partitions of 5: 1^5, 1^3 2, 1 2^2, 1^2 3, 2 3, 1 4, 5. Adding these together in pairs we get a(5) = 25 partitions of 10: 1^10, 1^8 2, 1^6 2^2, etc. (we get all partitions of 10 into parts of size <= 5 - there are 30 such partitions - except for five of them: we do not get 2 4^2, 3^2 4, 2^3 4, 1 3^3, 2^5). - N. J. A. Sloane, Jun 03 2012
From Gus Wiseman, Oct 27 2022: (Start)
The a(1) = 1 through a(4) = 14 partitions:
(11) (22) (33) (44)
(211) (321) (422)
(1111) (2211) (431)
(3111) (2222)
(21111) (3221)
(111111) (3311)
(4211)
(22211)
(32111)
(41111)
(221111)
(311111)
(2111111)
(11111111)
(End)
MAPLE
g:= proc(n, i) option remember;
`if`(n=0, 1, `if`(i>1, g(n, i-1), 0)+`if`(i>n, 0, g(n-i, i)))
end:
b:= proc(n, i, s) option remember;
`if`(i=1 and s<>{} or n in s, g(n, i), `if`(i<1 or s={}, 0,
b(n, i-1, s)+ `if`(i>n, 0, b(n-i, i, map(x-> {`if`(x>n-i, NULL,
max(x, n-i-x)), `if`(x<i or x>n, NULL, max(x-i, n-x))}[], s)))))
end:
a:= n-> b(2*n, n, {n}):
seq(a(n), n=1..25); # Alois P. Heinz, Jul 10 2012
MATHEMATICA
b[n_, i_, s_] := b[n, i, s] = If[MemberQ[s, 0 | n], 0, If[n == 0, 1, If[i < 1, 0, b[n, i-1, s] + If[i <= n, b[n-i, i, Select[Flatten[Transpose[{s, s-i}]], 0 <= # <= n-i &]], 0]]]]; A006827[n_] := b[2*n, 2*n, {n}]; a[n_] := PartitionsP[2*n] - A006827[n]; Table[Print[an = a[n]]; an, {n, 1, 25}] (* Jean-François Alcover, Nov 12 2013, after Alois P. Heinz *)
primeMS[n_]:=If[n==1, {}, Flatten[Cases[FactorInteger[n], {p_, k_}:>Table[PrimePi[p], {k}]]]];
subptns[s_]:=primeMS/@Divisors[Times@@Prime/@s];
Table[Length[Select[IntegerPartitions[2n], MemberQ[Total/@subptns[#], n]&]], {n, 10}] (* Gus Wiseman, Oct 27 2022 *)
PROG
(Python)
from itertools import combinations_with_replacement
from sympy.utilities.iterables import partitions
def A002219(n): return len({tuple(sorted((p+q).items())) for p, q in combinations_with_replacement(tuple(Counter(p) for p in partitions(n)), 2)}) # Chai Wah Wu, Sep 20 2023
CROSSREFS
KEYWORD
nonn,nice
AUTHOR
EXTENSIONS
Better description from Vladeta Jovovic, Mar 06 2000
More terms from Christian G. Bower, Oct 12 2001
Edited by N. J. A. Sloane, Jun 03 2012
More terms from Alois P. Heinz, Jul 10 2012
STATUS
approved