login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A120940
Alternating sum of the Fibonacci numbers multiplied by their (combinatorial) indices.
2
0, 1, 3, 6, 14, 26, 52, 95, 177, 318, 572, 1012, 1784, 3117, 5423, 9382, 16170, 27758, 47500, 81035, 137885, 234046, 396408, 670056, 1130544, 1904281, 3202587, 5378310, 9020102, 15109058, 25279012, 42248567, 70537929, 117657342, 196076468, 326485852
OFFSET
0,3
LINKS
M. M. Herreshoff, A Combinatorial proof of the summation from k = 0 to n of k times f sub k, Presented at The Twelfth International Conference on Fibonacci Numbers and Their Applications.
FORMULA
a(n) = Sum_{k=0..n} (-1)^(n-k)*k*f(k) also, when n >= 3, a(n) = nf(n-1) + f(n-3) + (-1)^n where f(n) = F(n+1).
a(n) = (-1)^n+A000045(n)-A001629(n+2)-3*A001629(n+1). - R. J. Mathar, Jul 11 2011
From Colin Barker, Apr 03 2019: (Start)
G.f.: x*(1 + 2*x) / ((1 + x)*(1 - x - x^2)^2).
a(n) = a(n-1) + 3*a(n-2) - a(n-3) - 3*a(n-4) - a(n-5) for n>4.
(End)
MATHEMATICA
CoefficientList[Series[(2*z^2 + z)/((z + 1)*(z^2 + z - 1)^2), {z, 0, 100}], z] (* Vladimir Joseph Stephan Orlovsky, Jul 08 2011 *)
LinearRecurrence[{1, 3, -1, -3, -1}, {0, 1, 3, 6, 14}, 40] (* Harvey P. Dale, Apr 21 2018 *)
PROG
#!/usr/bin/guile -s Computes the alternating sum of the fibonacci numbers multiplied by their (combinatorial) indices. !# (use-modules (srfi srfi-1)) (define (fibo n) (define (iter a b k) (if (= k n) b (iter b (+ a b) (+ k 1)))) (iter 0 1 0)) (define (a n) (fold + 0 (map (lambda (k) (* k (fibo k) (expt -1 (- n k)))) (iota (+ n 1)))))
(PARI) concat(0, Vec(x*(1 + 2*x) / ((1 + x)*(1 - x - x^2)^2) + O(x^40))) \\ Colin Barker, Apr 03 2019
CROSSREFS
Sequence in context: A002219 A006906 A324703 * A049940 A265947 A358831
KEYWORD
nonn,easy
AUTHOR
Marcello M. Herreshoff (m(AT)marcello.gotdns.com), Jul 18 2006
STATUS
approved