login
A358831
Number of twice-partitions of n into partitions with weakly decreasing lengths.
16
1, 1, 3, 6, 14, 26, 56, 102, 205, 372, 708, 1260, 2345, 4100, 7388, 12819, 22603, 38658, 67108, 113465, 193876, 324980, 547640, 909044, 1516609, 2495023, 4118211, 6726997, 11002924, 17836022, 28948687, 46604803, 75074397, 120134298, 192188760, 305709858, 486140940
OFFSET
0,3
COMMENTS
A twice-partition of n is a sequence of integer partitions, one of each part of an integer partition of n.
LINKS
EXAMPLE
The a(1) = 1 through a(4) = 14 twice-partitions:
(1) (2) (3) (4)
(11) (21) (22)
(1)(1) (111) (31)
(2)(1) (211)
(11)(1) (1111)
(1)(1)(1) (2)(2)
(3)(1)
(11)(2)
(21)(1)
(11)(11)
(111)(1)
(2)(1)(1)
(11)(1)(1)
(1)(1)(1)(1)
MATHEMATICA
twiptn[n_]:=Join@@Table[Tuples[IntegerPartitions/@ptn], {ptn, IntegerPartitions[n]}];
Table[Length[Select[twiptn[n], GreaterEqual@@Length/@#&]], {n, 0, 10}]
PROG
(PARI)
P(n, y) = {1/prod(k=1, n, 1 - y*x^k + O(x*x^n))}
seq(n) = {my(g=Vec(P(n, y)-1), v=[1]); for(k=1, n, my(p=g[k], u=v); v=vector(k+1); v[1] = 1 + O(x*x^n); for(j=1, k, v[1+j] = (v[j] + if(j<k, u[1+j] - u[j]))/(1 - polcoef(p, j)*x^k))); Vec(v[1+n])} \\ Andrew Howroyd, Dec 31 2022
CROSSREFS
This is the semi-ordered case of A141199.
For constant instead of weakly decreasing lengths we have A306319.
For distinct instead of weakly decreasing lengths we have A358830.
A063834 counts twice-partitions, strict A296122, row-sums of A321449.
A196545 counts p-trees, enriched A289501.
Sequence in context: A120940 A049940 A265947 * A323450 A051749 A278788
KEYWORD
nonn
AUTHOR
Gus Wiseman, Dec 03 2022
EXTENSIONS
Terms a(26) and beyond from Andrew Howroyd, Dec 31 2022
STATUS
approved