login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A358832
Number of twice-partitions of n into partitions of distinct lengths and distinct sums.
4
1, 1, 2, 4, 7, 15, 25, 49, 79, 154, 248, 453, 748, 1305, 2125, 3702, 5931, 9990, 16415, 26844, 43246, 70947, 113653, 182314, 292897, 464614, 739640, 1169981, 1844511, 2888427, 4562850, 7079798, 11064182, 17158151, 26676385, 41075556, 63598025, 97420873, 150043132
OFFSET
0,3
COMMENTS
A twice-partition of n is a sequence of integer partitions, one of each part of an integer partition of n.
EXAMPLE
The a(1) = 1 through a(5) = 15 twice-partitions:
(1) (2) (3) (4) (5)
(11) (21) (22) (32)
(111) (31) (41)
(11)(1) (211) (221)
(1111) (311)
(21)(1) (2111)
(111)(1) (11111)
(21)(2)
(22)(1)
(3)(11)
(31)(1)
(111)(2)
(211)(1)
(111)(11)
(1111)(1)
MATHEMATICA
twiptn[n_]:=Join@@Table[Tuples[IntegerPartitions/@ptn], {ptn, IntegerPartitions[n]}];
Table[Length[Select[twiptn[n], UnsameQ@@Total/@#&&UnsameQ@@Length/@#&]], {n, 0, 10}]
PROG
(PARI)
seq(n)={ local(Cache=Map());
my(g=Vec(-1+1/prod(k=1, n, 1 - y*x^k + O(x*x^n))));
my(F(m, r, b) = my(key=[m, r, b], z); if(!mapisdefined(Cache, key, &z),
z = if(r<=0||m==0, r==0, self()(m-1, r, b) + sum(k=1, m, my(c=polcoef(g[m], k)); if(!bittest(b, k)&&c, c*self()(min(m-1, r-m), r-m, bitor(b, 1<<k)))));
mapput(Cache, key, z)); z);
vector(n+1, i, F(i-1, i-1, 0))
} \\ Andrew Howroyd, Dec 31 2022
CROSSREFS
This is the case of A271619 with distinct lengths.
These multiset partitions are ranked by A326535 /\ A326533.
This is the case of A358830 with distinct sums.
For constant instead of distinct lengths and sums we have A358833.
A063834 counts twice-partitions, strict A296122, row-sums of A321449.
A273873 counts strict trees.
Sequence in context: A171276 A027167 A259090 * A232464 A264292 A259592
KEYWORD
nonn
AUTHOR
Gus Wiseman, Dec 04 2022
EXTENSIONS
Terms a(21) and beyond from Andrew Howroyd, Dec 31 2022
STATUS
approved